22 research outputs found

    A Contemporary Approach to Non-Invasive 3D Determination of Individual Masticatory Muscle Forces:A Proof of Concept

    Get PDF
    Over the past decade, the demand for three-dimensional (3D) patient-specific (PS) modelling and simulations has increased considerably; they are now widely available and generally accepted as part of patient care. However, the patient specificity of current PS designs is often limited to this patient-matched fit and lacks individual mechanical aspects, or parameters, that conform to the specific patient’s needs in terms of biomechanical acceptance. Most biomechanical models of the mandible, e.g., finite element analyses (FEA), often used to design reconstructive implants or total joint replacement devices for the temporomandibular joint (TMJ), make use of a literature-based (mean) simplified muscular model of the masticatory muscles. A muscle’s cross-section seems proportionally related to its maximum contractile force and can be multiplied by an intrinsic strength constant, which previously has been calculated to be a constant of 37 [N/cm2]. Here, we propose a contemporary method to determine the patient-specific intrinsic strength value of the elevator mouth-closing muscles. The hypothesis is that patient-specific individual mandible elevator muscle forces can be approximated in a non-invasive manner. MRI muscle delineation was combined with bite force measurements and 3D-FEA to determine PS intrinsic strength values. The subject-specific intrinsic strength values were 40.6 [N/cm2] and 25.6 [N/cm2] for the 29- and 56-year-old subjects, respectively. Despite using a small cohort in this proof of concept study, we show that there is great variation between our subjects’ individual muscular intrinsic strength. This variation, together with the difference between our individual results and those presented in the literature, emphasises the value of our patient-specific muscle modelling and intrinsic strength determination protocol to ensure accurate biomechanical analyses and simulations. Furthermore, it suggests that average muscular models may only be sufficiently accurate for biomechanical analyses at a macro-scale level. A future larger cohort study will put the patient-specific intrinsic strength values in perspective

    Four-Dimensional Determination of the Patient-Specific Centre of Rotation for Total Temporomandibular Joint Replacements:Following the Groningen Principle

    Get PDF
    For patients who suffer from severe dysfunction of the temporomandibular joint (TMJ), a total joint replacement (TJR) in the form of a prosthesis may be indicated. The position of the centre of rotation in TJRs is crucial for good postoperative oral function; however, it is not determined patient-specifically (PS) in any current TMJ-TJR. The aim of this current study was to develop a 4D-workflow to ascertain the PS mean axis of rotation, or fixed hinge, that mimics the patient’s specific physiological mouth opening. Twenty healthy adult patients were asked to volunteer for a 4D-scanning procedure. From these 4D-scanning recordings of mouth opening exercises, patient-specific centres of rotation and axes of rotation were determined using our JawAnalyser tool. The mean CR location was positioned 28 [mm] inferiorly and 5.5 [mm] posteriorly to the centre of condyle (CoC). The 95% confidence interval ranged from 22.9 to 33.7 [mm] inferior and 3.1 to 7.8 [mm] posterior to the CoC. This study succeeded in developing an accurate 4D-workflow to determine a PS mean axis of rotation that mimics the patient’s specific physiological mouth opening. Furthermore, a change in concept is necessary for all commercially available TMJ-TJR prostheses in order to comply with the PS CRs calculated by our study. In the meantime, it seems wise to stick to placing the CR 15 [mm] inferiorly to the CoC, or even beyond, towards 28 [mm] if the patient’s anatomy allows this

    Development of patient-specific osteosynthesis including 3D-printed drilling guides for medial tibial plateau fracture surgery

    Get PDF
    Purpose: A substantial proportion of conventional tibial plateau plates have a poor fit, which may result in suboptimal fracture reduction due to applied -uncontrolled- compression on the bone. This study aimed to assess whether patient-specific osteosyntheses could facilitate proper fracture reduction in medial tibial plateau fractures. Methods: In three Thiel embalmed human cadavers, a total of six tibial plateau fractures (three Schatzker 4, and three Schatzker 6) were created and CT scans were made. A 3D surgical plan was created and a patient-specific implant was designed and fabricated for each fracture. Drilling guides that fitted on top of the customized plates were designed and 3D printed in order to assist the surgeon in positioning the plate and steering the screws in the preplanned direction. After surgery, a postoperative CT scan was obtained and outcome was compared with the preoperative planning in terms of articular reduction, plate positioning, and screw direction. Results: A total of six patient-specific implants including 41 screws were used to operate six tibial plateau fractures. Three fractures were treated with single plating, and three fractures with dual plating. The median intra-articular gap was reduced from 6.0 (IQR 4.5–9.5) to 0.9 mm (IQR 0.2–1.4), whereas the median step-off was reduced from 4.8 (IQR 4.1–5.3) to 1.3 mm (IQR 0.9–1.5). The median Euclidean distance between the centre of gravity of the planned and actual implant was 3.0 mm (IQR: 2.8–3.7). The lengths of the screws were according to the predetermined plan. None of the screws led to screw penetration. The median difference between the planned and actual screw direction was 3.3° (IQR: 2.5–5.1). Conclusion: This feasibility study described the development and implementation of a patient-specific workflow for medial tibial plateau fracture surgery that facilitates proper fracture reduction, tibial alignment and accurately placed screws by using custom-made osteosynthesis plates with drilling guides.</p

    Quantitative Three-Dimensional Measurements of Acetabular Fracture Displacement Could Be Predictive for Native Hip Survivorship

    Get PDF
    This study aims to develop a three-dimensional (3D) measurement for acetabular fracture displacement, determine the inter- and intra-observer variability, and correlate the measurement with clinical outcome. Three-dimensional models were created for 100 patients surgically treated for acetabular fractures. The ‘3D gap area’, the 3D surface between all the fracture fragments, was developed. The association between the 3D gap area and the risk of conversion to a total hip arthroplasty (THA) was determined by an ROC curve and a Cox regression analysis. The 3D gap area had an excellent inter-observer and intra-observer reliability. The preoperative median 3D gap area for patients without and with a THA was 1731 mm2 versus 2237 mm2. The median postoperative 3D gap area was 640 mm2 versus 845 mm2. The area under the curve was 0.63. The Cox regression analysis showed that a preoperative 3D gap area > 2103 mm2 and a postoperative 3D gap area > 1058 mm2 were independently associated with a 3.0 versus 2.4 times higher risk of conversion to a THA. A 3D assessment of acetabular fractures is feasible, reproducible, and correlates with clinical outcome. Three-dimensional measurements could be added to the current classification systems to quantify the level of fracture displacement and to assess operative results
    corecore