175 research outputs found
Anomalous magnetic splitting of the Kondo resonance
The splitting of the Kondo resonance in the density of states of an Anderson
impurity in finite magnetic field is calculated from the exact Bethe-ansatz
solution. The result gives an estimate of the electron spectral function for
nonzero magnetic field and Kondo temperature, with consequences for transport
experiments on quantum dots in the Kondo regime. The strong correlations of the
Kondo ground state cause a significant low-temperature reduction of the peak
splitting. Explicit formulae are found for the shift and broadening of the
Kondo peaks. A likely cause of the problems of large-N approaches to spin-1/2
impurities at finite magnetic field is suggested.Comment: 4 pages, 2 eps figures; published versio
Ground State and Spectral Properties of a Quantum Impurity in d-Wave Superconductors
The variational approach of Gunnarsson and Sch\"onhammer to the Anderson
impurity model is generalized to study d-wave superconductors in the presence
of dilute spin-1/2 impurities. We show that the local moment is screened when
the hybridization exceeds a nonzero critical value at which the ground state
changes from a spin doublet to a spin singlet. The electron spectral functions
are calculated in both phases. We find that while a Kondo resonance develops
above the Fermi level in the singlet phase, the spectral function exhibits a
low-energy spectral peak below the Fermi level in the spin doublet phase. The
origin of such a ``virtual Kondo resonance'' is the existence of low-lying
collective excitations in the spin-singlet sector. We discuss our results in
connection to recent spectroscopic experiments on Zn doped high-T
superconductors.Comment: 5 pages, 4figures, revised versio
Non Fermi Liquid Behaviour near a spin-glass transition
In this paper we study the competition between the Kondo effect and RKKY
interactions near the zero-temperature quantum critical point of an Ising-like
metallic spin-glass. We consider the mean-field behaviour of various physical
quantities. In the `quantum- critical regime' non-analytic corrections to the
Fermi liquid behaviour are found for the specific heat and uniform static
susceptibility, while the resistivity and NMR relaxation rate have a non-Fermi
liquid dependence on temperature.Comment: 15 pages, RevTex 3.0, 1 uuencoded ps. figure at the en
Nonvanishing Local Moment in Triplet Superconductors
The Kondo effect in a -wave superconductor is studied by
applying the Wilson's numerical renormalization group method. In this type of
superconductor with a full energy gap like a s-wave one, the ground state is
always a spin doublet, while a local spin is shrunk by the Kondo effect. The
calculated magnetic susceptibility indicates that the spin of the ground state
is generated by the orbital effect of the -wave Cooper
pairs. The effect of spin polarization of the triplet superconductor is also
discussed.Comment: 5 pages, 4 figures, to be published in J. Phys. Soc. Jp
Bethe ansatz approach to thermodynamics of superconducting magnetic alloys
We derive thermodynamic Bethe ansatz equations for a model describing an
Anderson impurity embedded in a BCS superconductor. The equations
are solved analytically in the zero-temperature limit, T=0. It is shown that
the impurities depress superconductivity in the Kondo limit, however at T=0 the
system remains in the superconducting state for any impurity concentration. In
the mixed-valence regime, an impurity contribution to the density of states of
the system near the Fermi level overcompensates a Cooper pairs weakening, and
superconductivity is enhanced.Comment: 4 pages, RevTex, to appear in PR
Multichannel pseudogap Kondo model: Large-N solution and quantum-critical dynamics
We discuss a multichannel SU(N) Kondo model which displays non-trivial
zero-temperature phase transitions due to a conduction electron density of
states vanishing with a power law at the Fermi level. In a particular large-N
limit, the system is described by coupled integral equations corresponding to a
dynamic saddle point. We exactly determine the universal low-energy behavior of
spectral densities at the scale-invariant fixed points, obtain anomalous
exponents, and compute scaling functions describing the crossover near the
quantum-critical points. We argue that our findings are relevant to recent
experiments on impurity-doped d-wave superconductors.Comment: 4 pages, 3 figs; extended discussion of large-N spin representations,
added references; accepted for publication in PR
Exactly solvable toy models of unconventional magnetic alloys: Bethe Ansatz versus Renormalization Group method
We propose toy models of unconventional magnetic alloys, in which the density
of band states, , and hybridization, , are energy
dependent; it is assumed, however, that
, and hence an effective
electron-impurity coupling is
energy independent. In the renormalization group approach, the physics of the
system is assumed to be governed by only rather than by
separate forms of and . However, an exact Bethe
Ansatz solution of the toy Anderson model demonstrates a crucial role of a form
of inverse band dispersion .Comment: A final version. A previous one has been sent to Archive because of
my technical mistake. Sorr
Overscreening of magnetic impurities in wave superconductors
We consider the screening of a magnetic impurity in a wave
superconductor. The properties of the state lead to an unusual
behavior in the impurity magnetic susceptibility, the impurity specific heat
and in the quasiparticle phase shift which can be used to diagnose the nature
of the condensed state. We construct an effective theory for this problem and
show that it is equivalent to a multichannel (one per node) non-marginal Kondo
problem with linear density of states and coupling constant J. There is a
quantum phase transition from an unscreened impurity state to an overscreened
Kondo state at a critical value J_c which varies with , the
superconducting gap away from the nodes. In the overscreened phase, the
impurity Fermi level and the amplitude of the ground
state singlet vanish at J_c like and J-J_c
respectively. We derive the scaling laws for the susceptibility and specific
heat in the overscreened phase at low fields and temperatures.Comment: 43 pages; shortened version; a number of typos have been correcte
Persistence of Li Induced Kondo Moments in the Superconducting State of Cuprates
We measure the magnetic susceptibility nearby Li spinless impurities in the
superconducting phase of the high Tc cuprate YBaCuO. The induced moment which
was found to exist above Tc persists below Tc. In the underdoped regime, it
retains its Curie law below Tc. In contrast, near optimal doping, the large
Kondo screening observed above Tc (T_K=135 K) is strongly reduced below Tc as
expected theoretically when the superconducting gap develops. This moment still
extends essentially on its 4 near neighbour Cu, showing the persistence of AF
correlations in the superconducting state. A direct comparison with recent STM
results of Pan et al. is proposed.Comment: accepted for publication in Phys. Rev. Lett. (issue of 30 april 2001)
Revised version : 8 pages including 4 pages of text and 4 figure
Kondo screening in d-wave superconductors in a Zeeman field and implications for STM spectra of Zn-doped cuprates
We consider the screening of an impurity moment in a d-wave superconductor
under the influence of a Zeeman magnetic field. Using the Numerical
Renormalization Group technique, we investigate the resulting pseudogap Kondo
problem, in particular the field-induced crossover behavior in the vicinity of
the zero-field boundary quantum phase transition. The impurity spectral
function and the resulting changes in the local host density of states are
calculated, giving specific predictions for high-field STM measurements on
impurity-doped cuprates.Comment: 5 pages, 4 figs, (v2) remark on c-axis field added, discussion
extended, (v3) final version as publishe
- …
