6 research outputs found

    Readout-power heating and hysteretic switching between thermal quasiparticle states in kinetic inductance detectors

    No full text
    A model is presented for readout-power heating in kinetic inductance detectors. It is shown that the power dissipated by the readout signal can cause the temperature of the quasiparticle system in the superconducting resonator to switch between well-defined states. At low readout powers, only a single solution to the heat balance equation exists, and the resonance curve merely distorts as the readout power is increased. At high readout powers, three states exist, two of which are stable, and the resonance curve shows hysteretic switching. The power threshold for switching depends on the geometry and material used but is typically around ?70 dBm for Aluminum resonators. A comprehensive set of simulations is reported, and a detailed account of the switching process is given. Experimental results are also shown, which are in strong qualitative agreement with the simulations. The general features of the model are independent of the precise cooling function, and are even applicable for resonators on suspended, thermally isolated, dielectric membranes, where an increase in quasiparticle lifetime is expected. We discuss various extensions to the technique, including the possibility of recovering the cooling function from large-signal measurements of the resonance curve.QN/Quantum NanoscienceApplied Science

    Evidence of a Nonequilibrium Distribution of Quasiparticles in the Microwave Response of a Superconducting Aluminum Resonator

    No full text
    In a superconductor, absorption of photons with an energy below the superconducting gap leads to redistribution of quasiparticles over energy and thus induces a strong nonequilibrium quasiparticle energy distribution. We have measured the electrodynamic response, quality factor, and resonant frequency of a superconducting aluminium microwave resonator as a function of microwave power and temperature. Below 200 mK, both the quality factor and resonant frequency decrease with increasing microwave power, consistent with the creation of excess quasiparticles due to microwave absorption. Counterintuitively, above 200 mK, the quality factor and resonant frequency increase with increasing power. We demonstrate that the effect can only be understood by a nonthermal quasiparticle distribution.QN/Quantum NanoscienceApplied Science

    HARP: A submillimetre heterodyne array receiver operating on the James Clerk Maxwell Telescope

    No full text
    This paper describes the key design features and performance of HARP, an innovative heterodyne focal-plane array receiver designed and built to operate in the submillimetre on the James Clerk Maxwell Telescope (JCMT) in Hawaii. The 4x4 element array uses SIS detectors, and is the first sub-millimetre spectral imaging system on the JCMT. HARP provides 3-dimensional imaging capability with high sensitivity at 325-375 GHz and affords significantly improved productivity in terms of speed of mapping. HARP was designed and built as a collaborative project between the Cavendish Astrophysics Group in Cambridge UK, the UK-Astronomy Technology Centre in Edinburgh UK, the Herzberg Institute of Astrophysics in Canada and the Joint Astronomy Centre in Hawaii. SIS devices for the mixers were fabricated to a Cavendish Astrophysics Group design at the Delft University of Technology in the Netherlands. Working in conjunction with the new Auto Correlation Spectral Imaging System (ACSIS), first light with HARP was achieved in December 2005. HARP synthesizes a number of interesting features across all elements of the design; we present key performance characteristics and images of astronomical observations obtained during commissioning.Kavli Institute of NanoscienceApplied Science

    The non-equilibrium response of a superconductor to pair-breaking radiation measured over a broad frequency band

    No full text
    We have measured the absorption of terahertz radiation in a BCS superconductor over a broad range of frequencies from 200 GHz to 1.1 THz, using a broadband antenna-lens system and a tantalum microwave resonator. From low frequencies, the response of the resonator rises rapidly to a maximum at the gap edge of the superconductor. From there on, the response drops to half the maximum response at twice the pair-breaking energy. At higher frequencies, the response rises again due to trapping of pair-breaking phonons in the superconductor. In practice, this is a measurement of the frequency dependence of the quasiparticle creation efficiency due to pair-breaking in a superconductor. The efficiency, calculated from the different non-equilibrium quasiparticle distribution functions at each frequency, is in agreement with the measurements.QN/Quantum NanoscienceApplied Science

    Development of transition edge superconducting bolometers for the SAFARI Far-Infrared spectrometer on the SPICA space-borne telescope

    No full text
    We describe the optimization of transition edge superconducting (TES) detectors for use in a far-infrared (FIR) Fourier transform spectrometer (FTS) mounted on a cryogenically cooled space-borne telescope (e.g. SPICA). The required noise equivalent power (NEP) of the detectors is approximately 10?19 W/ ?Hz in order to be lower than the photon noise from astrophysical sources in octave wide bands in the FIR. The detector time constants must be less than 10 ms in order to allow fast scanning of the FTS mechanism. The detectors consist of superconducting thermometers suspended on thin legs of thermally isolating silicon nitride and operate at a temperature of approximately 100 mK. We present the design of the detectors, a proposed focal plane layout and optical coupling scheme and measurements of thermal conductance and time constant for low NEP prototype TES bolometers.Kavli Institute of NanoscienceApplied Science
    corecore