4 research outputs found

    Specificity protein 2 (Sp2) is essential for mouse development and autonomous proliferation of mouse embryonic fibroblasts

    Get PDF
    Background: The zinc finger protein Sp2 (specificity protein 2) is a member of the glutamine-rich Sp family of transcription factors. Despite its close similarity to Sp1, Sp3 and Sp4, Sp2 does not bind to DNA or activate transcription when expressed in mammalian cell lines. The expression pattern and the biological relevance of Sp2 in the mouse are unknown. Methodology/Principal Findings: Whole-mount in situ hybridization of mouse embryos between E7.5 and E9.5 revealed abundant expression in most embryonic and extra-embryonic tissues. In order to unravel the biological relevance of Sp2, we have targeted the Sp2 gene by a tri-loxP strategy. Constitutive Sp2null and conditional Sp2cko knockout alleles were obtained by crossings with appropriate Cre recombinase expressing mice. Constitutive disruption of the mouse Sp2 gene (Sp2null) resulted in severe growth retardation and lethality before E9.5. Mouse embryonic fibroblasts (MEFs) derived from Sp2null embryos at E9.5 failed to grow. Cre-mediated ablation of Sp2 in Sp2cko/cko MEFs obtained from E13.5 strongly impaired cell proliferation. Conclusions/Significance: Our results demonstrate that Sp2 is essential for early mouse development and autonomous proliferation of MEFs in culture. Comparison of the Sp2 knockout phenotype with th

    Microinjection of cre recombinase RNA induces site-specific recombination of a transgene in mouse oocytes

    Get PDF
    We have developed a strategy for producing single copy transgenic mouse lines using Cre-loxP site specific recombination. The method is based on transient expression of the recombinase after injection of in vitro transcribed mRNA into the cytoplasm of fertilised eggs containing multiple copies of the transgene. The success rate of the recombination event is 100% (15 out of 15)

    Correction of the X-linked immunodeficiency phenotype by transgenic expression of human Bruton tyrosine kinase under the control of the class II major histocompatibility complex Ea locus control region.

    No full text
    Bruton tyrosine kinase (Btk) is essential for the development of pre-B cells to mature B cell stages. Btk-deficient mice manifest an X-linked immunodeficiency (xid) defect characterized by a reduction of peripheral IgMlow IgDhigh B cells, a lack of peritoneal CD5+ B cells, low serum levels of IgM and IgG3, and impaired responses to T cell independent type II (TI-II) antigens. We have generated transgenic mice in which expression of the human Btk gene is driven by the murine class II major histocompatibility complex Ea gene locus control region, which provides gene expression from the pre-B cell stage onwards. When these transgenic mice were mated onto a Btk- background, correction of the xid B cell defects was observed: B cells differentiated to mature IgMlowIgDhigh stages, peritoneal CD5+ B cells were present, and serum Ig levels and in vivo responses to TI-II antigens were in the normal ranges. A comparable rescue by transgenic Btk expression was also observed in heterozygous Btk+/- female mice in those B-lineage cells that were Btk-deficient as a result of X chromosome inactivation. These findings indicate that the Btk- phenotype in the mouse can be corrected by expression of human Btk from the pre-B cell stage onwards

    Altered DNA-binding specificity mutants of EKLF and Sp1 show that EKLF is an activator of the β-globin locus control region in vivo.

    Get PDF
    The locus control region of the beta-globin cluster contains five DNase I hypersensitive sites (5'HS1-5) required for locus activation. 5'HS3 contains six G-rich motifs that are essential for its activity. Members of a protein family, characterized by three zinc fingers highly homologous to those found in transcription factor Sp1, interact with these motifs. Because point mutagenesis cannot distinguish between family members, it is not known which protein activates 5'HS3. We show that the function of such closely related proteins can be distinguished in vivo by matching point mutations in 5'HS3 with amino acid changes in the zinc fingers of Sp1 and EKLF. Testing their activity in transgenic mice shows that EKLF is a direct activator of 5'HS3
    corecore