1,879 research outputs found
Unified single-photon and single-electron counting statistics: from cavity-QED to electron transport
A key ingredient of cavity quantum-electrodynamics (QED) is the coupling
between the discrete energy levels of an atom and photons in a single-mode
cavity. The addition of periodic ultra-short laser pulses allows one to use
such a system as a source of single photons; a vital ingredient in quantum
information and optical computing schemes. Here, we analyze and ``time-adjust''
the photon-counting statistics of such a single-photon source, and show that
the photon statistics can be described by a simple `transport-like'
non-equilibrium model. We then show that there is a one-to-one correspondence
of this model to that of non-equilibrium transport of electrons through a
double quantum dot nanostructure. Then we prove that the statistics of the
tunnelling electrons is equivalent to the statistics of the emitted photons.
This represents a unification of the fields of photon counting statistics and
electron transport statistics. This correspondence empowers us to adapt several
tools previously used for detecting quantum behavior in electron transport
systems (e.g., super-Poissonian shot noise, and an extension of the
Leggett-Garg inequality) to single-photon-source experiments.Comment: 8 pages, 3 figure
Two-dimensional Site-Bond Percolation as an Example of Self-Averaging System
The Harris-Aharony criterion for a statistical model predicts, that if a
specific heat exponent , then this model does not exhibit
self-averaging. In two-dimensional percolation model the index .
It means that, in accordance with the Harris-Aharony criterion, the model can
exhibit self-averaging properties. We study numerically the relative variances
and for the probability of a site belongin to the
"infinite" (maximum) cluster and the mean finite cluster size . It was
shown, that two-dimensional site-bound percolation on the square lattice, where
the bonds play the role of impurity and the sites play the role of the
statistical ensemble, over which the averaging is performed, exhibits
self-averaging properties.Comment: 15 pages, 5 figure
Atom laser coherence and its control via feedback
We present a quantum-mechanical treatment of the coherence properties of a
single-mode atom laser. Specifically, we focus on the quantum phase noise of
the atomic field as expressed by the first-order coherence function, for which
we derive analytical expressions in various regimes. The decay of this function
is characterized by the coherence time, or its reciprocal, the linewidth. A
crucial contributor to the linewidth is the collisional interaction of the
atoms. We find four distinct regimes for the linewidth with increasing
interaction strength. These range from the standard laser linewidth, through
quadratic and linear regimes, to another constant regime due to quantum
revivals of the coherence function. The laser output is only coherent (Bose
degenerate) up to the linear regime. However, we show that application of a
quantum nondemolition measurement and feedback scheme will increase, by many
orders of magnitude, the range of interaction strengths for which it remains
coherent.Comment: 15 pages, 6 figures, revtex
Optimal Unravellings for Feedback Control in Linear Quantum Systems
For quantum systems with linear dynamics in phase space much of classical
feedback control theory applies. However, there are some questions that are
sensible only for the quantum case, such as: given a fixed interaction between
the system and the environment what is the optimal measurement on the
environment for a particular control problem? We show that for a broad class of
optimal (state-based) control problems (the stationary
Linear-Quadratic-Gaussian class), this question is a semi-definite program.
Moreover, the answer also applies to Markovian (current-based) feedback.Comment: 5 pages. Version published by Phys. Rev. Let
The Uncertainty Relation in "Which-Way" Experiments: How to Observe Directly the Momentum Transfer using Weak Values
A which-way measurement destroys the twin-slit interference pattern. Bohr
argued that distinguishing between two slits a distance s apart gives the
particle a random momentum transfer \wp of order h/s. This was accepted for
more than 60 years, until Scully, Englert and Walther (SEW) proposed a
which-way scheme that, they claimed, entailed no momentum transfer. Storey,
Tan, Collett and Walls (STCW) in turn proved a theorem that, they claimed,
showed that Bohr was right. This work reviews and extends a recent proposal
[Wiseman, Phys. Lett. A 311, 285 (2003)] to resolve the issue using a
weak-valued probability distribution for momentum transfer, P_wv(\wp). We show
that P_wv(\wp) must be wider than h/6s. However, its moments can still be zero
because P_wv(\wp) is not necessarily positive definite. Nevertheless, it is
measurable in a way understandable to a classical physicist. We introduce a new
measure of spread for P_wv(\wp): half of the unit-confidence interval, and
conjecture that it is never less than h/4s. For an idealized example with
infinitely narrow slits, the moments of P_wv(\wp) and of the momentum
distributions are undefined unless a process of apodization is used. We show
that by considering successively smoother initial wave functions, successively
more moments of both P_wv(\wp) and the momentum distributions become defined.
For this example the moments of P_wv(\wp) are zero, and these are equal to the
changes in the moments of the momentum distribution. We prove that this
relation holds for schemes in which the moments of P_wv(\wp) are non-zero, but
only for the first two moments. We also compare these moments to those of two
other momentum-transfer distributions and \hat{p}_f-\hat{p}_i. We find
agreement between all of these, but again only for the first two moments.Comment: 14 pages, 6 figures, submitted to J. Opt.
Standard Quantum Limits for broadband position measurement
I utilize the Caves-Milburn model for continuous position measurements to
formulate a broadband version of the Standard Quantum Limit (SQL) for
monitoring the position of a free mass, and illustrate the use of Kalman
filtering to recover the SQL for estimating a weak classical force that acts on
a quantum-mechanical test particle under continuous observation. These
derivations are intended to clarify the interpretation of SQL's in the context
of continuous quantum measurement.Comment: Replaced version: changed title, fixed algebra error at the very end,
conclusions modified accordingly. Four pages, one eps figur
Coherent spin control by electromagnetic vacuum fluctuations
In coherent control, electromagnetic vacuum fluctuations usually cause
coherence loss through irreversible spontaneous emission. However, since the
dissipation via emission is essentially due to correlation of the fluctuations,
when emission ends in a superposition of multiple final states, correlation
between different pathways may build up if the "which-way" information is not
fully resolved (i.e., the emission spectrum is broader than the transition
energy range). Such correlation can be exploited for spin-flip control in a
-type three-level system, which manifests itself as an all-optical
spin echo in nonlinear optics with two orders of optical fields saved as
compared with stimulated Raman processes. This finding represents a new class
of optical nonlinearity induced by electromagnetic vacuum fluctuations.Comment: 7 pages including 5 figure
Information, disturbance and Hamiltonian quantum feedback control
We consider separating the problem of designing Hamiltonian quantum feedback
control algorithms into a measurement (estimation) strategy and a feedback
(control) strategy, and consider optimizing desirable properties of each under
the minimal constraint that the available strength of both is limited. This
motivates concepts of information extraction and disturbance which are distinct
from those usually considered in quantum information theory. Using these
concepts we identify an information trade-off in quantum feedback control.Comment: 13 pages, multicol Revtex, 2 eps figure
Rapid state purification protocols for a Cooper pair box
We propose techniques for implementing two different rapid state purification
schemes, within the constraints present in a superconducting charge qubit
system. Both schemes use a continuous measurement of charge (z) measurements,
and seek to minimize the time required to purify the conditional state. Our
methods are designed to make the purification process relatively insensitive to
rotations about the x-axis, due to the Josephson tunnelling Hamiltonian. The
first proposed method, based on the scheme of Jacobs [Phys. Rev. A 67,
030301(R) (2003)] uses the measurement results to control bias (z) pulses so as
to rotate the Bloch vector onto the x-axis of the Bloch sphere. The second
proposed method, based on the scheme of Wiseman and Ralph [New J. Phys. 8, 90
(2006)] uses a simple feedback protocol which tightly rotates the Bloch vector
about an axis almost parallel with the measurement axis. We compare the
performance of these and other techniques by a number of different measures.Comment: 14 pages, 14 figures. v2: Revised version after referee comments.
Accepted for publication by Physical Review
Phase dynamics in a binary-collisions atom laser scheme
Various aspects of the phase dynamics of an atom laser scheme based on binary
collisions are investigated. Analytical estimates of the influence of elastic
atom-atom collisions on the laser linewidth are given, and linewidths
achievable in a recently proposed atom laser scheme [Phys. Rev. A 56, 2989
(1997)] are evaluated explicitly. The extent to which a relative phase can be
established between two interfering atom lasers, as well as the properties of
that phase, are also investigated.Comment: Revtex, 10 pages, 6 figure
- …