57 research outputs found

    A Coastal Jet in the Chukchi Sea

    Get PDF
    Data collected in the nearshore region between Point Lay and Ice Cape, Alaska, support the thesis that a well-developed coastal jet is present during the summer. The temporal variability of the current is as predicted by theory. The physical characteristics of the region suggest a strong signal-to-noise ratio for the baroclinic coastal jet. It is probably the dominant mode of summer coastal circulation for the entire Chukchi Sea coast of the Alaskan North Slope

    A three-dimensional current meter for estuarine applications

    Get PDF
    A curr ent meter that is capable of measuring the high-frequency fluctuations of the three-dimensional velocity vector has been developed. The meter works on a doppler-shift principle. At high velocities, the meter has been shown to have an accuracy of better than 3%

    A Chaperone Trap Contributes to the Onset of Cystic Fibrosis

    Get PDF
    Protein folding is the primary role of proteostasis network (PN) where chaperone interactions with client proteins determine the success or failure of the folding reaction in the cell. We now address how the Phe508 deletion in the NBD1 domain of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein responsible for cystic fibrosis (CF) impacts the binding of CFTR with cellular chaperones. We applied single ion reaction monitoring mass spectrometry (SRM-MS) to quantitatively characterize the stoichiometry of the heat shock proteins (Hsps) in CFTR folding intermediates in vivo and mapped the sites of interaction of the NBD1 domain of CFTR with Hsp90 in vitro. Unlike folding of WT-CFTR, we now demonstrate the presence of ΔF508-CFTR in a stalled folding intermediate in stoichiometric association with the core Hsps 40, 70 and 90, referred to as a ‘chaperone trap’. Culturing cells at 30 C resulted in correction of ΔF508-CFTR trafficking and function, restoring the sub-stoichiometric association of core Hsps observed for WT-CFTR. These results support the interpretation that ΔF508-CFTR is restricted to a chaperone-bound folding intermediate, a state that may contribute to its loss of trafficking and increased targeting for degradation. We propose that stalled folding intermediates could define a critical proteostasis pathway branch-point(s) responsible for the loss of function in misfolding diseases as observed in CF

    Citizens Show Strong Support for Climate Policy, But Are They Also Willing to Pay?

    Get PDF
    To what extent citizens are willing not only to support ambitious climate policy, but also willing to pay for such policy remains subject to debate. Our analysis addresses three issues in this regard: whether, as is widely assumed but not empirically established, willingness to support (WTS) is higher than willingness to pay (WTP); whether the determinants of the two are similar; and what accounts for within-subject similarity between WTS and WTP. We address these issues based on data from an original nationally representative survey (N=2500) on forest conservation in Brazil, arguably the key climate policy issue in the country. The findings reveal that WTP is much lower than WTS. The determinants differ to some extent as well; regarding the effects of age, gender, and trust in government. The analysis also provides insights into factors influencing how much WTS and WTP line up within individuals, with respect to age, education, political ideology, salience of the deforestation issue, and trust in government. Our findings provide a more nuanced picture of how strong public support for climate change policy is, and a starting point for more targeted climate policy communication

    Search for Standard Model Higgs Boson Production in Association with a W Boson using a Neural Network

    Get PDF
    Submitted to Phys. Rev. DWe present a search for standard model Higgs boson production in association with a W boson in proton-antiproton collisions at a center of mass energy of 1.96 TeV. The search employs data collected with the CDF II detector that correspond to an integrated luminosity of approximately 1.9 inverse fb. We select events consistent with a signature of a single charged lepton, missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with a secondary vertex tagging method, a jet probability tagging method, and a neural network filter. We use kinematic information in an artificial neural network to improve discrimination between signal and background compared to previous analyses. The observed number of events and the neural network output distributions are consistent with the standard model background expectations, and we set 95% confidence level upper limits on the production cross section times branching fraction ranging from 1.2 to 1.1 pb or 7.5 to 102 times the standard model expectation for Higgs boson masses from 110 to $150 GeV/c^2, respectively.We present a search for standard model Higgs boson production in association with a W boson in proton-antiproton collisions (pp̅ →W±H→ℓνbb̅ ) at a center of mass energy of 1.96 TeV. The search employs data collected with the CDF II detector that correspond to an integrated luminosity of approximately 1.9  fb-1. We select events consistent with a signature of a single charged lepton (e±/μ±), missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with a secondary vertex tagging method, a jet probability tagging method, and a neural network filter. We use kinematic information in an artificial neural network to improve discrimination between signal and background compared to previous analyses. The observed number of events and the neural network output distributions are consistent with the standard model background expectations, and we set 95% confidence level upper limits on the production cross section times branching fraction ranging from 1.2 to 1.1 pb or 7.5 to 102 times the standard model expectation for Higgs boson masses from 110 to 150  GeV/c2, respectively.Peer reviewe

    Observation of exclusive charmonium production and gamma+gamma to mu+mu- in p+pbar collisions at sqrt{s} = 1.96 TeV

    Get PDF
    7 pages, 3 figures, 1 table. Version accepted for Phys.Rev.Lett. Phys.Rev.Lett. (to be published)We have observed the reactions p+pbar --> p+X+pbar, with X being a centrally produced J/psi, psi(2S) or chi_c0, and gamma+gamma --> mu+mu-, in proton- antiproton collisions at sqrt{s} = 1.96 TeV using the Run II Collider Detector at Fermilab. The event signature requires two oppositely charged muons, each with pseudorapidity |eta| mu+mu-. Events with a J/psi and an associated photon candidate are consistent with exclusive chi_c0 production through double pomeron exchange. The exclusive vector meson production is as expected for elastic photo- production, gamma+p --> J/psi(psi(2S)) + p, which is observed here for the first time in hadron-hadron collisions. The cross sections ds/dy(y=0) for p + pbar --> p + X + pbar with X = J/psi, psi(2S) orchi_c0 are 3.92+/-0.62 nb, 0.53+/-0.14 nb, and 75+/-14 nb respectively. The cross section for the continuum, with |eta(mu+/-)|In CDF we have observed the reactions p+p̅ →p+X+p̅ , with X being a centrally produced J/ψ, ψ(2S), or χc0, and γγ→μ+μ- in pp̅ collisions at √s=1.96  TeV. The event signature requires two oppositely charged central muons, and either no other particles or one additional photon detected. Exclusive vector meson production is as expected for elastic photoproduction, γ+p→J/ψ(ψ(2S))+p, observed here for the first time in hadron-hadron collisions. We also observe exclusive χc0→J/ψ+γ. The cross sections dσ/dy|y=0 for J/ψ, ψ(2S), and χc0 are 3.92±0.25(stat)±0.52(syst)  nb, 0.53±0.09(stat)±0.10(syst)  nb, and 76±10(stat)±10(syst)  nb, respectively, and the continuum is consistent with QED. We put an upper limit on the cross section for Odderon exchange in exclusive J/ψ production.Peer reviewe

    Search for the Production of Narrow tb Resonances in 1.9 fb-1 of ppbar Collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present new limits on resonant tb production in proton-antiproton collisions at 1.96 TeV, using 1.9 fb^-1 of data recorded with the CDF II detector at the Fermilab Tevatron. We reconstruct a candidate mass in events with a lepton, neutrino candidate, and two or three jets, and search for anomalous tb production as modeled by W'->tb. We set a new limit on a right-handed W' with standard model-like coupling, excluding any mass below 800 GeV at 95% C.L. The cross-section for any narrow, resonant tb production between 750 and 950 GeV is found to be less than 0.28 pb at 95% C.L. We also present an exclusion of the W' coupling strength versus W' mass over the range 300 to 950 GeV.We present new limits on resonant tb̅ production in pp̅ collisions at √s=1.96  TeV, using 1.9  fb-1 of data recorded with the CDF II detector at the Fermilab Tevatron. We reconstruct a candidate tb̅ mass in events with a lepton, neutrino candidate, and two or three jets, and search for anomalous tb̅ production as modeled by W′→tb̅ . We set a new limit on a right-handed W′ with standard model-like coupling, excluding any mass below 800  GeV/c2 at 95% C.L. The cross section for any narrow, resonant tb̅ production between 750 and 950  GeV/c2 is found to be less than 0.28 pb at 95% C.L. We also present an exclusion of the W′ coupling strength versus W′ mass over the range 300–950  GeV/c2.Peer reviewe

    Measurement of b hadron lifetimes in exclusive decays containing a J/psi in p-pbar collisions at sqrt(s)=1.96TeV

    Get PDF
    We report on a measurement of bb-hadron lifetimes in the fully reconstructed decay modes B^+ -->J/Psi K+, B^0 --> J/Psi K*, B^0 --> J/Psi Ks, and Lambda_b --> J/Psi Lambda using data corresponding to an integrated luminosity of 4.3 fb1{\rm fb}^{-1}, collected by the CDF II detector at the Fermilab Tevatron. The measured lifetimes are τ\tauB^+ = 1.639±0.009(stat)±0.009(syst) ps1.639 \pm 0.009 ({\rm stat}) \pm 0.009 {\rm (syst) ~ ps}, τ\tauB^0 = 1.507±0.010(stat)±0.008(syst) ps1.507 \pm 0.010 ({\rm stat}) \pm 0.008 {\rm (syst) ~ ps} and τ\tauLambda_b = 1.537±0.045(stat)±0.014(syst) ps1.537 \pm 0.045 ({\rm stat}) \pm 0.014 {\rm (syst) ~ ps}. The lifetime ratios are τ\tauB^+/τ\tauB^0 = 1.088±0.009(stat)±0.004(syst)1.088 \pm 0.009 ({\rm stat})\pm 0.004 ({\rm syst}) and τ\tauLambda_b/τ\tauB^0 = 1.020±0.030(stat)±0.008(syst)1.020 \pm 0.030 ({\rm stat})\pm 0.008 ({\rm syst}). These are the most precise determinations of these quantities from a single experiment.Comment: revised version. accepted for PRL publicatio

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore