5,200 research outputs found

    The powerful outburst in Hercules A

    Get PDF
    The radio source Hercules A resides at the center of a cooling flow cluster of galaxies at redshift z = 0.154. A Chandra X-ray image reveals a shock front in the intracluster medium (ICM) surrounding the radio source, about 160 kpc from the active galactic nucleus (AGN) that hosts it. The shock has a Mach number of 1.65, making it the strongest of the cluster-scale shocks driven by an AGN outburst found so far. The age of the outburst ~5.9e7 y, its energy about 3e61 erg and its mean power ~1.6e46 erg/s. As for the other large AGN outbursts in cooling flow clusters, this outburst overwhelms radiative losses from the ICM of the Hercules A cluster by a factor of ~100. It adds to the case that AGN outbursts are a significant source of preheating for the ICM. Unless the mechanical efficiency of the AGN in Hercules A exceeds 10%, the central black hole must have grown by more than 1.7e8 Msun to power this one outburst.Comment: 4 pages, 5 figures, accepted by ApJ

    The Detectability of AGN Cavities in Cooling-Flow Clusters

    Full text link
    Chandra X-ray Observatory has revealed X-ray cavities in many nearby cooling flow clusters. The cavities trace feedback from the central active galactic nulceus (AGN) on the intracluster medium (ICM), an important ingredient in stabilizing cooling flows and in the process of galaxy formation and evolution. But, the prevalence and duty cycle of such AGN outbursts is not well understood. To this end, we study how the cooling is balanced by the cavity heating for a complete sample of clusters (the Brightest 55 clusters of galaxies, hereafter B55). In the B55, we found 33 cooling flow clusters, 20 of which have detected X-ray bubbles in their ICM. Among the remaining 13, all except Ophiuchus could have significant cavity power yet remain undetected in existing images. This implies that the duty cycle of AGN outbursts with significant heating potential in cooling flow clusters is at least 60 % and could approach 100 %, but deeper data is required to constrain this further.Comment: 4 pages, 2 figures; to appear in the proceedings of "The Monsters' Fiery Breath", Madison, Wisconsin 1-5 June 2009, Eds. Sebastian Heinz & Eric Wilcots; added annotation to the figur

    Towards a High Energy Theory for the Higgs Phase of Gravity

    Get PDF
    Spontaneous Lorentz violation due to a time-dependent expectation value for a massless scalar has been suggested as a method for dynamically generating dark energy. A natural candidate for the scalar is a Goldstone boson arising from the spontaneous breaking of a U(1) symmetry. We investigate the low-energy effective action for such a Goldstone boson in a general class of models involving only scalars, proving that if the scalars have standard kinetic terms then at the {\em classical} level the effective action does not have the required features for spontaneous Lorentz violation to occur asymptotically (t→∞)(t \to \infty) in an expanding FRW universe. Then we study the large NN limit of a renormalizable field theory with a complex scalar coupled to massive fermions. In this model an effective action for the Goldstone boson with the properties required for spontaneous Lorentz violation can be generated. Although the model has shortcomings, we feel it represents progress towards finding a high energy completion for the Higgs phase of gravity.Comment: 20 pages, 5 figures;fixed typos and added reference

    Jet Interactions with the Hot Halos of Clusters and Galaxies

    Get PDF
    X-ray observations of cavities and shock fronts produced by jets streaming through hot halos have significantly advanced our understanding of the energetics and dynamics of extragalactic radio sources. Radio sources at the centers of clusters have dynamical ages between ten and several hundred million years. They liberate between 1E58-1E62 erg per outburst, which is enough energy to regulate cooling of hot halos from galaxies to the richest clusters. Jet power scales approximately with the radio synchrotron luminosity to the one half power. However, the synchrotron efficiency varies widely from nearly unity to one part in 10,000, such that relatively feeble radio source can have quasar-like mechanical power. The synchrotron ages of cluster radio sources are decoupled from their dynamical ages, which tend to be factors of several to orders of magnitude older. Magnetic fields and particles in the lobes tend to be out of equipartition. The lobes may be maintained by heavy particles (e.g., protons), low energy electrons, a hot, diffuse thermal gas, or possibly magnetic (Poynting) stresses. Sensitive X-ray images of shock fronts and cavities can be used to study the dynamics of extragalactic radio sources.Comment: 10 pages, 3 figures, invited review, "Extragalactic Jets: Theory and Observation from Radio to Gamma Ray, held in Girdwood, Alaska, U.S.A. 21-24 May, 2007, minor text changes; one added referenc

    Gravity from a fermionic condensate of a gauge theory

    Full text link
    The most prominent realization of gravity as a gauge theory similar to the gauge theories of the standard model comes from enlarging the gauge group from the Lorentz group to the de Sitter group. To regain ordinary Einstein-Cartan gravity the symmetry must be broken, which can be accomplished by known quasi-dynamic mechanisms. Motivated by symmetry breaking models in particle physics and condensed matter systems, we propose that the symmetry can naturally be broken by a homogenous and isotropic fermionic condensate of ordinary spinors. We demonstrate that the condensate is compatible with the Einstein-Cartan equations and can be imposed in a fully de Sitter invariant manner. This lends support, and provides a physically realistic mechanism for understanding gravity as a gauge theory with a spontaneously broken local de Sitter symmetry.Comment: 16 page

    An Energetic AGN Outburst Powered by a Rapidly Spinning Supermassive Black Hole or an Accreting Ultramassive Black Hole

    Full text link
    Powering the 10^62 erg nuclear outburst in the MS0735.6+7421 cluster central galaxy by accretion implies that its supermassive black hole (SMBH) grew by ~6x10^8 solar masses over the past 100 Myr. We place upper limits on the amount of cold gas and star formation near the nucleus of <10^9 solar masses and <2 solar masses per year, respectively. These limits imply that an implausibly large fraction of the preexisting cold gas in the bulge must have been consumed by its SMBH at the rate of ~3-5 solar masses per year while leaving no trace of star formation. Such a high accretion rate would be difficult to maintain by stellar accretion or the Bondi mechanism, unless the black hole mass approaches 10^11 solar masses. Its feeble nuclear luminosities in the UV, I, and X-ray bands compared to its enormous mechanical power are inconsistent with rapid accretion onto a ~5x10^9 solar mass black hole. We suggest instead that the AGN outburst is powered by a rapidly-spinning black hole. A maximally-spinning, 10^9 solar mass black hole contains enough rotational energy, ~10^62 erg, to quench a cooling flow over its lifetime and to contribute significantly to the excess entropy found in the hot atmospheres of groups and clusters. Two modes of AGN feedback may be quenching star formation in elliptical galaxies centered in cooling halos at late times. An accretion mode that operates in gas-rich systems, and a spin mode operating at modest accretion rates. The spin conjecture may be avoided in MS0735 by appealing to Bondi accretion onto a central black hole whose mass greatly exceeds 10^10 solar mass. The host galaxy's unusually large, 3.8 kpc stellar core radius (light deficit) may witness the presence of an ultramassive black hole.Comment: Accepted for publication in ApJ. Modifications: adopted slightly higher black hole mass using Lauer's M_SMBH vs L_bulge relation and adjusted related quantities; considered more seriously the consequences of a ultramassive black hole, motivated by new Kormendy & Bender paper published after our submission; other modifications per referee comments by Ruszkowsk

    Electronic states and optical properties of PbSe nanorods and nanowires

    Full text link
    A theory of the electronic structure and excitonic absorption spectra of PbS and PbSe nanowires and nanorods in the framework of a four-band effective mass model is presented. Calculations conducted for PbSe show that dielectric contrast dramatically strengthens the exciton binding in narrow nanowires and nanorods. However, the self-interaction energies of the electron and hole nearly cancel the Coulomb binding, and as a result the optical absorption spectra are practically unaffected by the strong dielectric contrast between PbSe and the surrounding medium. Measurements of the size-dependent absorption spectra of colloidal PbSe nanorods are also presented. Using room-temperature energy-band parameters extracted from the optical spectra of spherical PbSe nanocrystals, the theory provides good quantitative agreement with the measured spectra.Comment: 35 pages, 12 figure

    A Deep Chandra Observation of the AGN Outburst and Merger in Hickson Compact Group 62

    Get PDF
    We report on an analysis of new Chandra data of the galaxy group HCG 62, well known for possessing cavities in its intragroup medium (IGM) that were inflated by the radio lobes of its central active galactic nucleus (AGN). With the new data, a factor of three deeper than previous Chandra data, we re-examine the energetics of the cavities and determine new constraints on their contents. We confirm that the ratio of radiative to mechanical power of the AGN outburst that created the cavities is less than 10^-4, among the lowest of any known cavity system, implying that the relativistic electrons in the lobes can supply only a tiny fraction of the pressure required to support the cavities. This finding implies additional pressure support in the lobes from heavy particles (e.g., protons) or thermal gas. Using spectral fits to emission in the cavities, we constrain any such volume-filling thermal gas to have a temperature kT > 4.3 keV. For the first time, we detect X-ray emission from the central AGN, with a luminosity of L(2-10 keV) = (1.1 +/- 0.4) x 10^39 erg s^-1 and properties typical of a low-luminosity AGN. Lastly, we report evidence for a recent merger from the surface brightness, temperature, and metallicity structure of the IGM.Comment: Accepted to MNRAS, 14 pages, 9 figure

    Time-Resolved Intraband Relaxation of Strongly-Confined Electrons and Holes in Colloidal PbSe Nanocrystals

    Full text link
    The relaxation of strongly-confined electrons and holes between 1P and 1S levels in colloidal PbSe nanocrystals has been time-resolved using femtosecond transient absorption spectroscopy. In contrast to II-VI and III-V semiconductor nanocrystals, both electrons and holes are strongly confined in PbSe nanocrystals. Despite the large electron and hole energy level spacings (at least 12 times the optical phonon energy), we consistently observe picosecond time-scale relaxation. Existing theories of carrier relaxation cannot account for these experimental results. Mechanisms that could possibly circumvent the phonon bottleneck in IV-VI quantum dots are discussed

    Modulus Stabilization with Bulk Fields

    Get PDF
    We propose a mechanism for stabilizing the size of the extra dimension in the Randall-Sundrum scenario. The potential for the modulus field that sets the size of the fifth dimension is generated by a bulk scalar with quartic interactions localized on the two 3-branes. The minimum of this potential yields a compactification scale that solves the hierarchy problem without fine tuning of parameters.Comment: 8 pages, LaTeX; minor typo correcte
    • 

    corecore