7,251 research outputs found
Production of superconductor/carbon bicomponent fibers
Certain materials are unable to be drawn or spun into fiber form due to their improper melting characteristics or brittleness. However, fibrous samples of such materials are often necessary for the fabrication of intricate shapes and composites. In response to this problem, a unique process, referred to as the piggyback process, was developed to prepare fibrous samples of a variety of nonspinnable ceramics. In this technique, specially produced C shaped carbon fibers serve as micromolds to hold the desired materials prior to sintering. Depending on the sintering atmosphere used, bicomponent or single component fibers result. While much has been shown worldwide concerning the YBa2Cu3O(7-x) superconductor, fabrication into unique forms has proven quite difficult. However, a variety of intricate shapes are necessary for rapid commercialization of the superconducting materials. The potential for producing fibrous samples of the YBa2Cu3O(7-x) compound by the piggyback process is being studied. Various organic and acrylic materials were studied to determine suspending ability, reactivity with the YBa2Cu3O(7-x) compound during long term storage, and burn out characteristics. While many questions were answered with respect to the interfacial reactions between YBa2Cu3O(7-x) and carbon, much work is still necessary to improve the quality of the sintered material if the fibers produced are to be incorporated into useful composite or cables
Production of superconductor/carbon bicomponent fibers
Certain materials are unable to be drawn or spun into fiber form due to their improper melting characteristics or brittleness. However, fibrous samples of such materials are often necessary for the fabrication of intricate shapes and composites. In response to this problem, a unique process, referred to as the piggyback process, was developed to prepare fibrous samples of a variety of nonspinnable ceramics. In this technique, specially produced C-shaped carbon fibers serve as micromolds to hold the desired materials prior to sintering. Depending on the sintering atmosphere used, bicomponent or single component fibers result. While much has been demonstrated worldwide concerning the YBa2Cu3O(7-x) superconductor, fabrication into unique forms has proven quite difficult. However, a variety of intricate shapes are necessary for rapid commercialization of the superconducting materials. The potential for producing fibrous samples of the YBa2Cu3O(7-x) compound by the piggyback process is being investigated. Various organic and acrylic materials were investigated to determine suspending ability, reactivity with the YBa2Cu3O(7-x) compound during long term storage, and burn out characteristics. While many questions were answered with respect to the interfacial reactions between YBa2Cu3O(7-x) and carbon, much work is still necessary to improve the quality of the sintered material if the fibers produced are to be incorporated into useful composites or cables. Additional research is necessary to evaluate quality of the barrier layer during long soakings at the peak temperature; adjust the firing schedule to avoid microcracking and improve densification; and increase the solids loading in the superconductive suspension to decrease porosity
The Immirzi Parameter as an Instanton Angle
The Barbero-Immirzi parameter is a one parameter quantization ambiguity
underpinning the loop approach to quantum gravity that bears tantalizing
similarities to the theta parameter of gauge theories such as Yang-Mills and
QCD. Despite the apparent semblance, the Barbero-Immirzi field has resisted a
direct topological interpretation along the same lines as the theta-parameter.
Here we offer such an interpretation. Our approach begins from the perspective
of Einstein-Cartan gravity as the symmetry broken phase of a de Sitter gauge
theory. From this angle, just as in ordinary gauge theories, a theta-term
emerges from the requirement that the vacuum is stable against quantum
mechanical tunneling. The Immirzi parameter is then identified as a combination
of Newton's constant, the cosmological constant, and the theta-parameter.Comment: 24 page
Resolving the Formation of Protogalaxies. III. Feedback from the First Stars
The first stars form in dark matter halos of masses ~10^6 M_sun as suggested
by an increasing number of numerical simulations. Radiation feedback from these
stars expels most of the gas from their shallow potential well of their
surrounding dark matter halos. We use cosmological adaptive mesh refinement
simulations that include self-consistent Population III star formation and
feedback to examine the properties of assembling early dwarf galaxies. Accurate
radiative transport is modeled with adaptive ray tracing. We include supernova
explosions and follow the metal enrichment of the intergalactic medium. The
calculations focus on the formation of several dwarf galaxies and their
progenitors. In these halos, baryon fractions in 10^8 solar mass halos decrease
by a factor of 2 with stellar feedback and by a factor of 3 with supernova
explosions. We find that radiation feedback and supernova explosions increase
gaseous spin parameters up to a factor of 4 and vary with time. Stellar
feedback, supernova explosions, and H_2 cooling create a complex, multi-phase
interstellar medium whose densities and temperatures can span up to 6 orders of
magnitude at a given radius. The pair-instability supernovae of Population III
stars alone enrich the halos with virial temperatures of 10^4 K to
approximately 10^{-3} of solar metallicity. We find that 40% of the heavy
elements resides in the intergalactic medium (IGM) at the end of our
calculations. The highest metallicity gas exists in supernova remnants and very
dilute regions of the IGM.Comment: 15 pages, 16 figures, accepted to ApJ. Many changes, including
estimates of metal line cooling. High resolution images and movies available
at http://www.slac.stanford.edu/~jwise/research/PGalaxies3
Near-field radiative heat transfer between macroscopic planar surfaces
Near-field radiative heat transfer allows heat to propagate across a small
vacuum gap in quantities that are several orders of magnitude greater then the
heat transfer by far-field, blackbody radiation. Although heat transfer via
near-field effects has been discussed for many years, experimental verification
of this theory has been very limited. We have measured the heat transfer
between two macroscopic sapphire plates, finding an increase in agreement with
expectations from theory. These experiments, conducted near 300 K, have
measured the heat transfer as a function of separation over mm to m and as
a function of temperature differences between 2.5 and 30 K. The experiments
demonstrate that evanescence can be put to work to transfer heat from an object
without actually touching it
The Birth of a Galaxy - III. Propelling reionisation with the faintest galaxies
Starlight from galaxies plays a pivotal role throughout the process of cosmic
reionisation. We present the statistics of dwarf galaxy properties at z > 7 in
haloes with masses up to 10^9 solar masses, using a cosmological radiation
hydrodynamics simulation that follows their buildup starting with their
Population III progenitors. We find that metal-enriched star formation is not
restricted to atomic cooling ( K) haloes, but can occur
in haloes down to masses ~10^6 solar masses, especially in neutral regions.
Even though these smallest galaxies only host up to 10^4 solar masses of stars,
they provide nearly 30 per cent of the ionising photon budget. We find that the
galaxy luminosity function flattens above M_UV ~ -12 with a number density that
is unchanged at z < 10. The fraction of ionising radiation escaping into the
intergalactic medium is inversely dependent on halo mass, decreasing from 50 to
5 per cent in the mass range . Using our galaxy
statistics in a semi-analytic reionisation model, we find a Thomson scattering
optical depth consistent with the latest Planck results, while still being
consistent with the UV emissivity constraints provided by Ly forest
observations at z = 4-6.Comment: 21 pages, 15 figures, 4 tables. Accepted in MNRA
A Deep Chandra Observation of the AGN Outburst and Merger in Hickson Compact Group 62
We report on an analysis of new Chandra data of the galaxy group HCG 62, well
known for possessing cavities in its intragroup medium (IGM) that were inflated
by the radio lobes of its central active galactic nucleus (AGN). With the new
data, a factor of three deeper than previous Chandra data, we re-examine the
energetics of the cavities and determine new constraints on their contents. We
confirm that the ratio of radiative to mechanical power of the AGN outburst
that created the cavities is less than 10^-4, among the lowest of any known
cavity system, implying that the relativistic electrons in the lobes can supply
only a tiny fraction of the pressure required to support the cavities. This
finding implies additional pressure support in the lobes from heavy particles
(e.g., protons) or thermal gas. Using spectral fits to emission in the
cavities, we constrain any such volume-filling thermal gas to have a
temperature kT > 4.3 keV. For the first time, we detect X-ray emission from the
central AGN, with a luminosity of L(2-10 keV) = (1.1 +/- 0.4) x 10^39 erg s^-1
and properties typical of a low-luminosity AGN. Lastly, we report evidence for
a recent merger from the surface brightness, temperature, and metallicity
structure of the IGM.Comment: Accepted to MNRAS, 14 pages, 9 figure
- …