1,023 research outputs found

    The Quantification of Tooth Displacement

    Get PDF
    By using reference points from a single pixel marker placed at the center point of the cuspid teeth and the center point on each of the incisor teeth, a polynomial curve was generated as a native curve for each dental arch studied. The polynomial curve generated from actual tooth position in each arch provides the forensic odontologist with another reference point that is quantifiable. The study represents that individual characteristics, such as tooth displacement, can be quantified in a simple, reliable, and repeatable format

    Energy Efficient Data-Intensive Computing With Mapreduce

    Get PDF
    Power and energy consumption are critical constraints in data center design and operation. In data centers, MapReduce data-intensive applications demand significant resources and energy. Recognizing the importance and urgency of optimizing energy usage of MapReduce applications, this work aims to provide instrumental tools to measure and evaluate MapReduce energy efficiency and techniques to conserve energy without impacting performance. Energy conservation for data-intensive computing requires enabling technology to provide detailed and systemic energy information and to identify in the underlying system hardware and software. To address this need, we present eTune, a fine-grained, scalable energy profiling framework for data-intensive computing on large-scale distributed systems. eTune leverages performance monitoring counters (PMCs) on modern computer components and statistically builds power-performance correlation models. Using learned models, eTune augments direct measurement with a software-based power estimator that runs on compute nodes and reports power at multiple levels including node, core, memory, and disks with high accuracy. Data-intensive computing differs from traditional high performance computing as most execution time is spent in moving data between storage devices, nodes, and components. Since data movements are potential performance and energy bottlenecks, we propose an analysis framework with methods and metrics for evaluating and characterizing costly built-in MapReduce data movements. The revealed data movement energy characteristics can be exploited in system design and resource allocation to improve data-intensive computing energy efficiency. Finally, we present an optimization technique that targets inefficient built-in MapReduce data movements to conserve energy without impacting performance. The optimization technique allocates the optimal number of compute nodes to applications and dynamically schedules processor frequency during its execution based on data movement characteristics. Experimental results show significant energy savings, though improvements depend on both workload characteristics and policies of resource and dynamic voltage and frequency scheduling. As data volume doubles every two years and more data centers are put into production, energy consumption is expected to grow further. We expect these studies provide direction and insight in building more energy efficient data-intensive systems and applications, and the tools and techniques are adopted by other researchers for their energy efficient studies

    A Methodology for Three-Dimensional Quantification of Anterior Tooth Width

    Get PDF
    The use of cone-beam computed tomography (CBCT) technology has been shown to be more accurate in measuring individual incisor tooth widths than the use of wax exemplars. There were fewer differences by investigators using CBCT than others using an F-test in a mixed model of the measurement differences of investigators, wax type, and which tooth was measured. In addition, the frequency of outliers was less in the CBCT method (a total of 5) as compared to the two-dimensional measurements in ether Aluwax (a total of 8) or Coprwax (a total of 12). Both results indicate that CBCT measurements accounted more precisely for tooth width and level of eruption

    Intra- and inter-examiner Reliability of Direct Facial Soft Tissue Measurements Using Digital Calipers

    Get PDF
    Background: The objective of this study is to determine if facial soft tissue measurements using digital calipers can be reliably taken by the same examiner and by a large group of examiners. Materials and Methods: Ten examiners performed a set of 18 in-clinic measurements on 10 female and 10 male dental students using a digital caliper twice over a 3-week period. The intra-class correlation coefficient and the Shrout-Fleiss method were used for the statistical analysis. Results: Anthropometric intra-examiner reliability was high for all measurements (none fell below R = 0.934). However, inter-examiner reliability exhibited a wide range of values, some reliable (nasal width at widest nostrils [R = 0.922] and subnasale to upper lip [R = 0.926]), and others unreliable [base of nose (R = 0.590), mouth height (R = 0.585), and soft tissue B point to gnathion (R = 0.623)]. Conclusions: Soft tissue measurements of clearly identifiable points measured by the same examiner produced highly consistent, accurate and reliable measurements. Soft tissue points with poor definition resulted in average-to-poor reliabilities measurements

    Quantification of the Individual Characteristics of the Human Dentition

    Get PDF
    The considerations for admissibility suggested by the Daubert trilogy challenge forensic experts to provide scientific support for opinion testimony. The defense bar has questioned the reliability of bitemark analysis. Under an award from the U. S. Department of Justice, via the Midwest Forensic Resource Center, a two-year feasibility study was undertaken to quantify six dental characteristics. Using two computer programs, the exemplars of 419 volunteers were digitally scanned, characteristics were measured, and frequency was calculated. The study demonstrates that there were outliers or rare dental characteristics in measurements. An analysis of the intra-observer and inter-observer consistency demonstrated a high degree of agreement. Expansion of the sample size through collaboration with other academic researchers will be necessary to be able to quantify the occurrence of these characteristics in the general population. The automated software application, Tom\u27s Toolbox, developed specifically for this research project, could also provide a template for precisely quantifying other pattern evidence

    Excitons in few-layer hexagonal boron nitride: Davydov splitting and surface localization

    Get PDF
    Hexagonal boron nitride (hBN) has been attracting great attention because of its strong excitonic effects. Taking into account few-layer systems, we investigate theoretically the effects of the number of layers on quasiparticle energies, absorption spectra, and excitonic states, placing particular focus on the Davydov splitting of the lowest bound excitons. We describe how the inter-layer interaction as well as the variation in electronic screening as a function of layer number NN affects the electronic and optical properties. Using both \textit{ab initio} simulations and a tight-binding model for an effective Hamiltonian describing the excitons, we characterize in detail the symmetry of the excitonic wavefunctions and the selection rules for their coupling to incoming light. We show that for N>2N > 2, one can distinguish between surface excitons that are mostly localized on the outer layers and inner excitons, leading to an asymmetry in the energy separation between split excitonic states. In particular, the bound surface excitons lie lower in energy than their inner counterparts. Additionally, this enables us to show how the layer thickness affects the shape of the absorption spectrum.Comment: 24 pages, 10 figure
    • …
    corecore