126 research outputs found
Recommended from our members
High-field dipoles for future accelerators
This report presents the concept for building superconducting accelerator dipoles with record high fields. Economic considerations favor the highest possible current density in the windings. Further discussion indicates that there is an optimal range of pinning strength for a superconducting material and that it is not likely for multifilamentary conductors to ever equal the potential performance of tape conductors. A dipole design with a tape-wound, inner high-field winding is suggested. Methods are detailed to avoid degradation caused by flux jumps and to overcome problems with the dipole ends. Concerns for force support structure and field precision are also addressed. An R and D program leading to a prototype 11-T dipole is outlined. Past and future importance of superconductivity to high-energy physics is evident from a short historical survey. Successful dipoles in the 10- to 20-T range will allow interesting options for upgrading present largest accelerators
Recommended from our members
Stability of superconducting ISABELLE dipole magnets
The concept of the minimum propagating zone (MPZ) is used to examine the causes of quenches in ISABELLE cosine theta superconducting dipole magnets. The size of disturbances large enough to exceed the MPZ and initiate quenches is estimated and compared with the size of disturbances which may be produced in the magnets. A suggestion for reducing the size of these disturbances through individual support of the coil block is outlined
Development of a superconducting protection switch for the HERA P-ring: design study and demonstration models
The electrical circuit of the HERA (Hadron Electron Ring Accelerator) proton ring (p-ring) is divided in octants so that in the case of a quench, the current has to be commutated to dumping resistors. The authors describe the application of superconducting switches which would enable the main circuit to remain at 4 K during a quench while the current is forced to flow through instantaneously loaded leads and dumping resistors. The main specifications of the required switches are: current of 6.5 kA, minimum off-resistance 12 Omega , energy absorbed 1 MJ, and self protecting. The various design and feasibility aspects of superconducting switches for this application are discussed. The requirement of being passively protected against a self-quench is considered the most critical design problem. It is still uncertain whether it remains necessary to apply an active protection scheme to enable safe operation of the switch
Magnetic flux jumps in textured Bi2Sr2CaCu2O(8+d)
Magnetic flux jumps in textured Bi2Sr2CaCu2O(8+d) have been studied by means
of magnetization measurements in the temperature range between 1.95 K and Tc,
in an external magnetic field up to 9 T. Flux jumps were found in the
temperature range 1.95 K - 6 K, with the external magnetic field parallel to
the c axis of the investigated sample. The effect of sample history on magnetic
flux jumping was studied and it was found to be well accounted for by the
available theoretical models. The magnetic field sweep rate strongly influences
the flux jumping and this effect was interpreted in terms of the influence of
both flux creep and the thermal environment of the sample. Strong flux creep
was found in the temperature and magnetic field range where flux jumps occur
suggesting a relationship between the two. The heat exchange conditions between
the sample and the experimental environment also influence the flux jumping
behavior. Both these effects stabilize the sample against flux instabilities,
and this stabilizing effect increases with decreasing magnetic field sweep
rate. Demagnetizing effects are also shown to have a significant influence on
flux jumping.Comment: 10 pages, 6 figures, RevTeX4, submitted to Phys. Rev.
Local threshold field for dendritic instability in superconducting MgB2 films
Using magneto-optical imaging the phenomenon of dendritic flux penetration in
superconducting films was studied. Flux dendrites were abruptly formed in a 300
nm thick film of MgB2 by applying a perpendicular magnetic field. Detailed
measurements of flux density distributions show that there exists a local
threshold field controlling the nucleation and termination of the dendritic
growth. At 4 K the local threshold field is close to 12 mT in this sample,
where the critical current density is 10^7 A/cm^2. The dendritic instability in
thin films is believed to be of thermo-magnetic origin, but the existence of a
local threshold field, and its small value are features that distinctly
contrast the thermo-magnetic instability (flux jumps) in bulk superconductors.Comment: 6 pages, 6 figures, submitted to Phys. Rev.
Flux Creep and Flux Jumping
We consider the flux jump instability of the Bean's critical state arising in
the flux creep regime in type-II superconductors. We find the flux jump field,
, that determines the superconducting state stability criterion. We
calculate the dependence of on the external magnetic field ramp rate,
. We demonstrate that under the conditions typical for most of the
magnetization experiments the slope of the current-voltage curve in the flux
creep regime determines the stability of the Bean's critical state, {\it i.e.},
the value of . We show that a flux jump can be preceded by the
magneto-thermal oscillations and find the frequency of these oscillations as a
function of .Comment: 7 pages, ReVTeX, 2 figures attached as postscript file
Suppression of Superconducting Critical Current Density by Small Flux Jumps in Thin Films
By doing magnetization measurements during magnetic field sweeps on thin
films of the new superconductor , it is found that in a low temperature
and low field region small flux jumps are taking place. This effect strongly
suppresses the central magnetization peak leading to reduced nominal
superconducting critical current density at low temperatures. A borderline for
this effect to occur is determined on the field-temperature (H-T) phase
diagram. It is suggested that the small size of the flux jumps in films is due
to the higher density of small defects and the relatively easy thermal
diffusion in thin films in comparison with bulk samples.Comment: 7 figures Phys. Rev. B accepted scheduled issue: 01 Feb 200
Global maps of soil temperature.
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
- …