6,244 research outputs found

    Non-Convex Rank Minimization via an Empirical Bayesian Approach

    Full text link
    In many applications that require matrix solutions of minimal rank, the underlying cost function is non-convex leading to an intractable, NP-hard optimization problem. Consequently, the convex nuclear norm is frequently used as a surrogate penalty term for matrix rank. The problem is that in many practical scenarios there is no longer any guarantee that we can correctly estimate generative low-rank matrices of interest, theoretical special cases notwithstanding. Consequently, this paper proposes an alternative empirical Bayesian procedure build upon a variational approximation that, unlike the nuclear norm, retains the same globally minimizing point estimate as the rank function under many useful constraints. However, locally minimizing solutions are largely smoothed away via marginalization, allowing the algorithm to succeed when standard convex relaxations completely fail. While the proposed methodology is generally applicable to a wide range of low-rank applications, we focus our attention on the robust principal component analysis problem (RPCA), which involves estimating an unknown low-rank matrix with unknown sparse corruptions. Theoretical and empirical evidence are presented to show that our method is potentially superior to related MAP-based approaches, for which the convex principle component pursuit (PCP) algorithm (Candes et al., 2011) can be viewed as a special case.Comment: 10 pages, 6 figures, UAI 2012 pape

    Quantum Fields near Black Holes

    Get PDF
    This review gives an introduction into problems, concepts and techniques when quantizing matter fields near black holes. The first part focusses on quantum fields in general curved space-times. The second part is devoted to a detailed treatment of the Unruh effect in uniformly accelerated frames and the Hawking radiation of black holes. Paricular emphasis is put on the induced energy momentum tensor near black holesComment: 33 pages, Latex, 5 figure

    Functional Schroedinger Equation for Fermions in External Gauge Fields

    Full text link
    We discuss the functional Schroedinger picture for fermions in external fields for both stationary and time-dependent problems. We give formal results for the ground state and the solution of the time-dependent Schroedinger equation for QED in arbitrary dimensions, while more explicit results are obtained in two dimensions. For both the massless and massive Schwinger model we give an explicit expression for the ground state functional as well as for the expectation values of energy, electric and axial charge. We also give the corresponding results for non-abelian fields. We solve the functional Schroedinger equation for a constant external field in four dimensions and obtain the amount of particle creation. We solve the Schroedinger equation for arbitrary external fields for massless QED in two dimensions and make a careful discussionof the anomalous particle creation rate. Finally, we discuss some subtleties connected with the interpretation of the quantized Gauss constraint.Comment: 44 pages, LaTex File, preprint Freiburg THEP-94/2 and ETH-TH/93-17, hep-th/9306161, corrected version (in particular the particle production

    Exploring Algorithmic Limits of Matrix Rank Minimization under Affine Constraints

    Full text link
    Many applications require recovering a matrix of minimal rank within an affine constraint set, with matrix completion a notable special case. Because the problem is NP-hard in general, it is common to replace the matrix rank with the nuclear norm, which acts as a convenient convex surrogate. While elegant theoretical conditions elucidate when this replacement is likely to be successful, they are highly restrictive and convex algorithms fail when the ambient rank is too high or when the constraint set is poorly structured. Non-convex alternatives fare somewhat better when carefully tuned; however, convergence to locally optimal solutions remains a continuing source of failure. Against this backdrop we derive a deceptively simple and parameter-free probabilistic PCA-like algorithm that is capable, over a wide battery of empirical tests, of successful recovery even at the theoretical limit where the number of measurements equal the degrees of freedom in the unknown low-rank matrix. Somewhat surprisingly, this is possible even when the affine constraint set is highly ill-conditioned. While proving general recovery guarantees remains evasive for non-convex algorithms, Bayesian-inspired or otherwise, we nonetheless show conditions whereby the underlying cost function has a unique stationary point located at the global optimum; no existing cost function we are aware of satisfies this same property. We conclude with a simple computer vision application involving image rectification and a standard collaborative filtering benchmark

    On the Symmetries of Hamiltonian Systems

    Full text link
    In this paper we show how the well-know local symmetries of Lagrangeans systems, and in particular the diffeomorphism invariance, emerge in the Hamiltonian formulation. We show that only the constraints which are linear in the momenta generate transformations which correspond to symmetries of the corresponding Lagrangean system. The nonlinear constraints (which we have, for instance, in gravity, supergravity and string theory) rather generate the dynamics of the corresponding Lagrangean system. Only in a very special combination with "trivial" transformations proportional to the equations of motion do they lead to symmetry transformations. We reveal the importance of these special "trivial" transformations for the interconnection theorems which relate the symmetries of a system with its dynamics. We prove these theorems for general Hamiltonian systems. We apply the developed formalism to concrete physically relevant systems and in particular those which are diffeomorphism invariant. The connection between the parameters of the symmetry transformations in the Hamiltonian- and Lagrangean formalisms is found. The possible applications of our results are discussed.Comment: 44 page
    • …
    corecore