21 research outputs found
Topology analysis and visualization of Potyvirus protein-protein interaction network
Background: One of the central interests of Virology is the identification of host factors that contribute to virus infection. Despite tremendous efforts, the list of factors identified remains limited. With omics techniques, the focus has changed from identifying and thoroughly characterizing individual host factors to the simultaneous analysis of thousands of interactions, framing them on the context of protein-protein interaction networks and of transcriptional regulatory networks. This new perspective is allowing the identification of direct and indirect viral targets. Such information is available for several members of the Potyviridae family, one of the largest and more important families of plant viruses.
Results: After collecting information on virus protein-protein interactions from different potyviruses, we have processed it and used it for inferring a protein-protein interaction network. All proteins are connected into a single network component. Some proteins show a high degree and are highly connected while others are much less connected, with the network showing a significant degree of dissortativeness. We have attempted to integrate this virus protein-protein interaction network into the largest protein-protein interaction network of Arabidopsis thaliana, a susceptible laboratory host. To make the interpretation of data and results easier, we have developed a new approach for visualizing and analyzing the dynamic spread on the host network of the local perturbations induced by viral proteins. We found that local perturbations can reach the entire host protein-protein interaction network, although the efficiency of this spread depends on the particular viral proteins.
By comparing the spread dynamics among viral proteins, we found that some proteins spread their effects fast and efficiently by attacking hubs in the host network while other proteins exert more local effects.
Conclusions: Our findings confirm that potyvirus protein-protein interaction networks are highly connected, with some proteins playing the role of hubs. Several topological parameters depend linearly on the protein degree. Some viral proteins focus their effect in only host hubs while others diversify its effect among several proteins at the first step. Future new data will help to refine our model and to improve our predictions.This work was supported by the Spanish Ministerio de Economia y Competitividad grants BFU2012-30805 (to SFE), DPI2011-28112-C04-02 (to AF) and DPI2011-28112-C04-01 (to JP). The first two authors are recipients of fellowships from the Spanish Ministerio de Economia y Competitividad: BES-2012-053772 (to GB) and BES-2012-057812 (to AF-F).Bosque, G.; Folch Fortuny, A.; Picó Marco, JA.; Ferrer, A.; Elena Fito, SF. (2014). Topology analysis and visualization of Potyvirus protein-protein interaction network. BMC Systems Biology. 129(8):1-15. doi:10.1186/s12918-014-0129-8S1151298Gibbs A, Ohshima K: Potyviruses and the digital revolution. Annu Rev Phytopathol. 2010, 48: 205-223. 10.1146/annurev-phyto-073009-114404.Spence NJ, Phiri NA, Hughes SL, Mwaniki A, Simons S, Oduor G, Chacha D, Kuria A, Ndirangu S, Kibata GN, Marris GC: Economic impact of turnip mosaic virus, cauliflower mosaic virus and beet mosaic virus in three Kenyan vegetables. Plant Pathol. 2007, 56: 317-323. 10.1111/j.1365-3059.2006.01498.x.Ward CW, Shukla DD: Taxonomy of potyviruses: current problems and some solutions. Intervirology. 1991, 32: 269-296.Riechmann JL, LaÃn S, GarcÃa JA: Highlights and prospects of potyvirus molecular biology. J Gen Virol. 1992, 73 (Pt 1): 1-16. 10.1099/0022-1317-73-1-1.Elena SF, Rodrigo G: Towards an integrated molecular model of plant-virus interactions. Curr Opin Virol. 2012, 2: 719-724. 10.1016/j.coviro.2012.09.004.Wei T, Zhang C, Hong J, Xiong R, Kasschau KD, Zhou X, Carrington JC, Wang A: Formation of complexes at plasmodesmata for potyvirus intercellular movement is mediated by the viral protein P3N-PIPO. PLoS Pathog. 2010, 6: e1000962-10.1371/journal.ppat.1000962.Chung BY-W, Miller WA, Atkins JF, Firth AE: An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci. 2008, 105: 5897-5902. 10.1073/pnas.0800468105.Allison R, Johnston RE, Dougherty WG: The nucleotide sequence of the coding region of tobacco etch virus genomic RNA: evidence for the synthesis of a single polyprotein. Virology. 1986, 154: 9-20. 10.1016/0042-6822(86)90425-3.Domier LL, Franklin KM, Shahabuddin M, Hellmann GM, Overmeyer JH, Hiremath ST, Siaw MF, Lomonossoff GP, Shaw JG, Rhoads RE: The nucleotide sequence of tobacco vein mottling virus RNA. Nucleic Acids Res. 1986, 14: 5417-5430. 10.1093/nar/14.13.5417.Revers F, Le Gall O, Candresse T, Maule AJ: New advances in understanding the molecular biology of plant/potyvirus interactions. Mol Plant Microbe Interact. 1999, 12: 367-376. 10.1094/MPMI.1999.12.5.367.Urcuqui-Inchima S, Haenni AL, Bernardi F: Potyvirus proteins: a wealth of functions. Virus Res. 2001, 74: 157-175. 10.1016/S0168-1702(01)00220-9.Merits A, Rajamäki M-L, Lindholm P, Runeberg-Roos P, Kekarainen T, Puustinen P, Mäkeläinen K, Valkonen JPT, Saarma M: Proteolytic processing of potyviral proteins and polyprotein processing intermediates in insect and plant cells. J Gen Virol. 2002, 83: 1211-1221.Adams MJ, Antoniw JF, Beaudoin F: Overview and analysis of the polyprotein cleavage sites in the family Potyviridae. Mol Plant Pathol. 2005, 6: 471-487. 10.1111/j.1364-3703.2005.00296.x.Zheng H, Yan F, Lu Y, Sun L, Lin L, Cai L, Hou M, Chen J: Mapping the self-interacting domains of TuMV HC-Pro and the subcellular localization of the protein. Virus Genes. 2011, 42: 110-116. 10.1007/s11262-010-0538-8.Culver JN, Padmanabhan MS: Virus-induced disease: altering host physiology one interaction at a time. Annu Rev Phytopathol. 2007, 45: 221-243. 10.1146/annurev.phyto.45.062806.094422.De Las Rivas J, Fontanillo C: Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol. 2010, 6: e1000807-10.1371/journal.pcbi.1000807.Bornke F: Protein Interaction Networks. Anal Biol Netw. Edited by: Junker BH, Schreiber F. 2008, John Wiley & Sons, Inc, Hoboken, NJ, USA, 207-232. 10.1002/9780470253489.ch9.Phizicky EM, Fields S: Protein-protein interactions: methods for detection and analysis. Microbiol Rev. 1995, 59: 94-123.Brückner A, Polge C, Lentze N, Auerbach D, Schlattner U: Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci. 2009, 10: 2763-2788. 10.3390/ijms10062763.Fields S, Song O: A novel genetic system to detect protein-protein interactions. Nature. 1989, 340: 245-246. 10.1038/340245a0.Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams S-L, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, et al: Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature. 2002, 415: 180-183. 10.1038/415180a.Hu C-D, Chinenov Y, Kerppola TK: Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell. 2002, 9: 789-798. 10.1016/S1097-2765(02)00496-3.Kodama Y, Hu C-D: An improved bimolecular fluorescence complementation assay with a high signal-to-noise ratio. Biotechniques. 2010, 49: 793-805. 10.2144/000113519.Rual J-F, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, et al: Towards a proteome-scale map of the human protein-protein interaction network. Nature. 2005, 437: 1173-1178. 10.1038/nature04209.Venkatesan K, Rual J-F, Vazquez A, Stelzl U, Lemmens I, Hirozane-Kishikawa T, Hao T, Zenkner M, Xin X, Goh K-I, Yildirim MA, Simonis N, Heinzmann K, Gebreab F, Sahalie JM, Cevik S, Simon C, de Smet A-S, Dann E, Smolyar A, Vinayagam A, Yu H, Szeto D, Borick H, Dricot A, Klitgord N, Murray RR, Lin C, Lalowski M, Timm J, et al: An empirical framework for binary interactome mapping. Nat Methods. 2008, 6: 83-90. 10.1038/nmeth.1280.Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM: A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature. 2000, 403: 623-627. 10.1038/35001009.Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci. 2001, 98: 4569-4574. 10.1073/pnas.061034498.Uetz P, Dong Y-A, Zeretzke C, Atzler C, Baiker A, Berger B, Rajagopala SV, Roupelieva M, Rose D, Fossum E, Haas J: Herpesviral protein networks and their interaction with the human proteome. Science. 2006, 311: 239-242. 10.1126/science.1116804.Fossum E, Friedel CC, Rajagopala SV, Titz B, Baiker A, Schmidt T, Kraus T, Stellberger T, Rutenberg C, Suthram S, Bandyopadhyay S, Rose D, von Brunn A, Uhlmann M, Zeretzke C, Dong Y-A, Boulet H, Koegl M, Bailer SM, Koszinowski U, Ideker T, Uetz P, Zimmer R, Haas J: Evolutionarily conserved herpesviral protein interaction networks. PLoS Pathog. 2009, 5: e1000570-10.1371/journal.ppat.1000570.Rodrigo G, Carrera J, Ruiz-Ferrer V, del Toro FJ, Llave C, Voinnet O, Elena SF: A meta-analysis reveals the commonalities and differences in Arabidopsis thaliana response to different viral pathogens. PLoS One. 2012, 7: e40526-10.1371/journal.pone.0040526.Newman MEJ: The structure and function of complex networks. SIAM Rev. 2003, 45: 167-256. 10.1137/S003614450342480.Watts DJ, Strogatz SH: Collective dynamics of "small-world" networks. Nature. 1998, 393: 440-442. 10.1038/30918.Albert R, Barabási A-L: Statistical mechanics of complex networks. Rev Mod Phys. 2002, 74: 47-97. 10.1103/RevModPhys.74.47.Boccaletti S, Latora V, Moreno Y, Chávez M, Hwang D: Complex networks: structure and dynamics. Phys Rep. 2006, 424: 175-308. 10.1016/j.physrep.2005.10.009.Barabási A-L, Oltvai ZN: Network biology: understanding the cell's functional organization. Nat Rev Genet. 2004, 5: 101-113. 10.1038/nrg1272.Albert R, DasGupta B, Hegde R, Sivanathan GS, Gitter A, Gürsoy G, Paul P, Sontag E: Computationally efficient measure of topological redundancy of biological and social networks. Phys Rev E. 2011, 84: 036117-10.1103/PhysRevE.84.036117.Cho D-Y, Kim Y-A, Przytycka TM: Chapter 5: network biology approach to complex diseases. PLoS Comput Biol. 2012, 8: e1002820-10.1371/journal.pcbi.1002820.Russell RB, Aloy P: Targeting and tinkering with interaction networks. Nat Chem Biol. 2008, 4: 666-673. 10.1038/nchembio.119.Winterbach W, Mieghem PV, Reinders M, Wang H, de Ridder D: Topology of molecular interaction networks. BMC Syst Biol. 2013, 7: 90-10.1186/1752-0509-7-90.Pržulj N: Protein-protein interactions: making sense of networks via graph-theoretic modeling. Bioessays. 2011, 33: 115-123. 10.1002/bies.201000044.Yook S-H, Oltvai ZN, Barabási A-L: Functional and topological characterization of protein interaction networks. Proteomics. 2004, 4: 928-942. 10.1002/pmic.200300636.Pržulj N, Wigle DA, Jurisica I: Functional topology in a network of protein interactions. Bioinformatics. 2004, 20: 340-348. 10.1093/bioinformatics/btg415.Elena SF, Carrera J, Rodrigo G: A systems biology approach to the evolution of plant-virus interactions. Curr Opin Plant Biol. 2011, 14: 372-377. 10.1016/j.pbi.2011.03.013.Zilian E, Maiss E: Detection of plum pox potyviral protein-protein interactions in planta using an optimized mRFP-based bimolecular fluorescence complementation system. J Gen Virol. 2011, 92: 2711-2723. 10.1099/vir.0.033811-0.Lin L, Shi Y, Luo Z, Lu Y, Zheng H, Yan F, Chen J, Chen J, Adams MJ, Wu Y: Protein-protein interactions in two potyviruses using the yeast two-hybrid system. Virus Res. 2009, 142: 36-40. 10.1016/j.virusres.2009.01.006.Guo D, Rajamäki M-L, Saarma M, Valkonen JPT: Towards a protein interaction map of potyviruses: protein interaction matrixes of two potyviruses based on the yeast two-hybrid system. J Gen Virol. 2001, 82: 935-939.Shen WT, Wang MQ, Yan P, Gao L, Zhou P: Protein interaction matrix of papaya ringspot virus type P based on a yeast two-hybrid system. Acta Virol. 2010, 54: 49-54. 10.4149/av_2010_01_49.Kang S, Ws L, Kh K: A protein interaction map of soybean mosaic virus strain G7H based on the yeast two-hybrid system. Mol Cells. 2004, 18: 122-126.Yambao MLM, Masuta C, Nakahara K, Uyeda I: The central and C-terminal domains of VPg of Clover yellow vein virus are important for VPg-HCPro and VPg-VPg interactions. J Gen Virol. 2003, 84: 2861-2869. 10.1099/vir.0.19312-0.Evidence for network evolution in an Arabidopsis interactome map. Science. 2011, 333: 601-607. 10.1126/science.1203877.Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13: 2498-2504. 10.1101/gr.1239303.Fouss F, Francoisse K, Yen L, Pirotte A, Saerens M: An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification. Neural Netw Off J Int Neural Netw Soc. 2012, 31: 53-72. 10.1016/j.neunet.2012.03.001.Bass JIF, Diallo A, Nelson J, Soto JM, Myers CL, Walhout AJM: Using networks to measure similarity between genes: association index selection. Nat Methods. 2013, 10: 1169-1176. 10.1038/nmeth.2728.Newman MEJ: Assortative mixing in networks. Phys Rev Lett. 2002, 89: 208701-10.1103/PhysRevLett.89.208701
The Evolutionary Dynamics of the Lion Panthera leo Revealed by Host and Viral Population Genomics
The lion Panthera leo is one of the world's most charismatic carnivores and is one of Africa's key predators. Here, we used a large dataset from 357 lions comprehending 1.13 megabases of sequence data and genotypes from 22 microsatellite loci to characterize its recent evolutionary history. Patterns of molecular genetic variation in multiple maternal (mtDNA), paternal (Y-chromosome), and biparental nuclear (nDNA) genetic markers were compared with patterns of sequence and subtype variation of the lion feline immunodeficiency virus (FIVPle), a lentivirus analogous to human immunodeficiency virus (HIV). In spite of the ability of lions to disperse long distances, patterns of lion genetic diversity suggest substantial population subdivision (mtDNA ΦST = 0.92; nDNA FST = 0.18), and reduced gene flow, which, along with large differences in sero-prevalence of six distinct FIVPle subtypes among lion populations, refute the hypothesis that African lions consist of a single panmictic population. Our results suggest that extant lion populations derive from several Pleistocene refugia in East and Southern Africa (∼324,000–169,000 years ago), which expanded during the Late Pleistocene (∼100,000 years ago) into Central and North Africa and into Asia. During the Pleistocene/Holocene transition (∼14,000–7,000 years), another expansion occurred from southern refugia northwards towards East Africa, causing population interbreeding. In particular, lion and FIVPle variation affirms that the large, well-studied lion population occupying the greater Serengeti Ecosystem is derived from three distinct populations that admixed recently
Flux-dependent graphs for metabolic networks
Cells adapt their metabolic fluxes in response to changes in the environment.
We present a framework for the systematic construction of flux-based graphs
derived from organism-wide metabolic networks. Our graphs encode the
directionality of metabolic fluxes via edges that represent the flow of
metabolites from source to target reactions. The methodology can be applied in
the absence of a specific biological context by modelling fluxes
probabilistically, or can be tailored to different environmental conditions by
incorporating flux distributions computed through constraint-based approaches
such as Flux Balance Analysis. We illustrate our approach on the central carbon
metabolism of Escherichia coli and on a metabolic model of human hepatocytes.
The flux-dependent graphs under various environmental conditions and genetic
perturbations exhibit systemic changes in their topological and community
structure, which capture the re-routing of metabolic fluxes and the varying
importance of specific reactions and pathways. By integrating constraint-based
models and tools from network science, our framework allows the study of
context-specific metabolic responses at a system level beyond standard pathway
descriptions
The bii4africa dataset of faunal and floral population intactness estimates across Africa's major land uses
This is the final version. Available on open access from Nature Research via the DOI in this recordCode availability: R code for calculating aggregated intactness scores for a focal region (e.g., ecoregion or country) and/or taxonomic group can be downloaded with the bii4africa dataset on Figshare; see Data Records section.Sub-Saharan Africa is under-represented in global biodiversity datasets, particularly regarding the impact of land use on species' population abundances. Drawing on recent advances in expert elicitation to ensure data consistency, 200 experts were convened using a modified-Delphi process to estimate 'intactness scores': the remaining proportion of an 'intact' reference population of a species group in a particular land use, on a scale from 0 (no remaining individuals) to 1 (same abundance as the reference) and, in rare cases, to 2 (populations that thrive in human-modified landscapes). The resulting bii4africa dataset contains intactness scores representing terrestrial vertebrates (tetrapods: ±5,400 amphibians, reptiles, birds, mammals) and vascular plants (±45,000 forbs, graminoids, trees, shrubs) in sub-Saharan Africa across the region's major land uses (urban, cropland, rangeland, plantation, protected, etc.) and intensities (e.g., large-scale vs smallholder cropland). This dataset was co-produced as part of the Biodiversity Intactness Index for Africa Project. Additional uses include assessing ecosystem condition; rectifying geographic/taxonomic biases in global biodiversity indicators and maps; and informing the Red List of Ecosystems.Jennifer Ward Oppenheimer Research Gran
Recommended from our members
The bii4africa dataset of faunal and floral population intactness estimates across Africa’s major land uses
Sub-Saharan Africa is under-represented in global biodiversity datasets, particularly regarding the impact of land use on species’ population abundances. Drawing on recent advances in expert elicitation to ensure data consistency, 200 experts were convened using a modified-Delphi process to estimate ‘intactness scores’: the remaining proportion of an ‘intact’ reference population of a species group in a particular land use, on a scale from 0 (no remaining individuals) to 1 (same abundance as the reference) and, in rare cases, to 2 (populations that thrive in human-modified landscapes). The resulting bii4africa dataset contains intactness scores representing terrestrial vertebrates (tetrapods: ±5,400 amphibians, reptiles, birds, mammals) and vascular plants (±45,000 forbs, graminoids, trees, shrubs) in sub-Saharan Africa across the region’s major land uses (urban, cropland, rangeland, plantation, protected, etc.) and intensities (e.g., large-scale vs smallholder cropland). This dataset was co-produced as part of the Biodiversity Intactness Index for Africa Project. Additional uses include assessing ecosystem condition; rectifying geographic/ taxonomic biases in global biodiversity indicators and maps; and informing the Red List of Ecosystems
The bii4africa dataset of faunal and floral population intactness estimates across Africa’s major land uses
Sub-Saharan Africa is under-represented in global biodiversity datasets, particularly regarding the impact of land use on species’ population abundances. Drawing on recent advances in expert elicitation to ensure data consistency, 200 experts were convened using a modified-Delphi process to estimate ‘intactness scores’: the remaining proportion of an ‘intact’ reference population of a species group in a particular land use, on a scale from 0 (no remaining individuals) to 1 (same abundance as the reference) and, in rare cases, to 2 (populations that thrive in human-modified landscapes). The resulting bii4africa dataset contains intactness scores representing terrestrial vertebrates (tetrapods: ±5,400 amphibians, reptiles, birds, mammals) and vascular plants (±45,000 forbs, graminoids, trees, shrubs) in sub-Saharan Africa across the region’s major land uses (urban, cropland, rangeland, plantation, protected, etc.) and intensities (e.g., large-scale vs smallholder cropland). This dataset was co-produced as part of the Biodiversity Intactness Index for Africa Project. Additional uses include assessing ecosystem condition; rectifying geographic/taxonomic biases in global biodiversity indicators and maps; and informing the Red List of Ecosystems
Tree cover and biomass increase in a southern African savanna despite growing elephant population
The growing elephant populations in many parts of southern Africa raise concerns of a detrimental loss of trees, resulting in overall reduction of biodiversity and ecosystem functioning. Elephant distribution and density can be steered through artificial waterpoints (AWPs). However, this leaves resident vegetation no relief during dry seasons. We studied how the introduction of eight AWPs in 1996 affected the spatiotemporal tree-structure dynamics in central Chobe National Park, an unfenced savanna area in northern Botswana with a dry-season elephant density of ~3.34 individuals per square kilometer. We hypothesized that the impact of these AWPs amplified over time and expanded in space, resulting in a decrease in average tree density, tree height, and canopy volume. We measured height and canopy dimensions of all woody plants around eight artificial and two seasonal waterpoints for 172 plots in 1997, 2000, and 2008. Plots, consisting of 50 × 2 m transects for small trees (0.20–3.00 m tall) nested within 50 × 20 m transects for large trees (≥3.0 m tall), were located at 100, 500, 1000, 2000, and 5000 m distance classes.A repeated-measures mixed-effect model showed that tree density, cover, and volume had increased over time throughout the area, caused by a combination of an increase of trees in lower size classes and a decrease in larger size classes. Our results indicate that the decrease of large trees can be attributed to a growing elephant population. Decrease or loss of particular tree size classes may have been caused by a loss of browser-preferred species while facilitating the competitiveness of less-preferred species. In spite of 12 years of artificial water supply and an annual elephant population growth of 6%, we found no evidence that the eight AWPs had a negative effect on tree biomass or tree structure. The decreasing large-tree component could be a remainder of a depleted but currently restoring elephant population
Landscape Suitability in Botswana for the Conservation of Its Six Large African Carnivores
<div><p>Wide-ranging large carnivores often range beyond the boundaries of protected areas into human-dominated areas. Mapping out potentially suitable habitats on a country-wide scale and identifying areas with potentially high levels of threats to large carnivore survival is necessary to develop national conservation action plans. We used a novel approach to map and identify these areas in Botswana for its large carnivore guild consisting of lion (<i>Panthera leo</i>), leopard (<i>Panthera pardus</i>), spotted hyaena (<i>Crocuta crocuta</i>), brown hyaena (<i>Hyaena brunnea</i>), cheetah (<i>Acinonyx jubatus</i>) and African wild dog (<i>Lycaon pictus</i>). The habitat suitability for large carnivores depends primarily on prey availability, interspecific competition, and conflict with humans. Prey availability is most likely the strongest natural determinant. We used the distribution of biomass of typical wild ungulate species occurring in Botswana which is preyed upon by the six large carnivores to evaluate the potential suitability of the different management zones in the country to sustain large carnivore populations. In areas where a high biomass of large prey species occurred, we assumed interspecific competition between dominant and subordinated competitors to be high. This reduced the suitability of these areas for conservation of subordinate competitors, and vice versa. We used the percentage of prey biomass of the total prey and livestock biomass to identify areas with potentially high levels of conflict in agricultural areas. High to medium biomass of large prey was mostly confined to conservation zones, while small prey biomass was more evenly spread across large parts of the country. This necessitates different conservation strategies for carnivores with a preference for large prey, and those that can persist in the agricultural areas. To ensure connectivity between populations inside Botswana and also with its neighbours, a number of critical areas for priority management actions exist in the agricultural zones.</p></div
Conserving large carnivores: dollars and fence
Conservationists often advocate for landscape approaches to wildlife management while others argue for physical separation between protected species and human communities, but direct empirical comparisons of these alternatives are scarce. We relate African lion population densities and population trends to contrasting management practices across 42 sites in 11 countries. Lion populations in fenced reserves are significantly closer to their estimated carrying capacities than unfenced populations. Whereas fenced reserves can maintain lions at 80% of their potential densities on annual management budgets of 2000 km−2 to attain half their potential densities. Lions in fenced reserves are primarily limited by density dependence, but lions in unfenced reserves are highly sensitive to human population densities in surrounding communities, and unfenced populations are frequently subjected to density-independent factors. Nearly half the unfenced lion populations may decline to near extinction over the next 20–40 years