785 research outputs found

    On the existence of dyons and dyonic black holes in Einstein-Yang-Mills theory

    Get PDF
    We study dyonic soliton and black hole solutions of the su(2){\mathfrak {su}}(2) Einstein-Yang-Mills equations in asymptotically anti-de Sitter space. We prove the existence of non-trivial dyonic soliton and black hole solutions in a neighbourhood of the trivial solution. For these solutions the magnetic gauge field function has no zeros and we conjecture that at least some of these non-trivial solutions will be stable. The global existence proof uses local existence results and a non-linear perturbation argument based on the (Banach space) implicit function theorem.Comment: 23 pages, 2 figures. Minor revisions; references adde

    On the stability of soliton and hairy black hole solutions of SU(N) Einstein-Yang-Mills theory with a negative cosmological constant

    Get PDF
    We investigate the stability of spherically symmetric, purely magnetic, soliton and black hole solutions of four-dimensional su(N) Einstein-Yang-Mills theory with a negative cosmological constant Λ. These solutions are described by N − 1 magnetic gauge field functions ωj. We consider linear, spherically symmetric, perturbations of these solutions. The perturbations decouple into two sectors, known as the sphaleronic and gravitational sectors. For any N, there are no instabilities in the sphaleronic sector if all the magnetic gauge field functions ωj have no zeros and satisfy a set of N − 1 inequalities. In the gravitational sector, we prove that there are solutions which have no instabilities in a neighbourhood of stable embedded su(2) solutions, provided the magnitude of the cosmological constant |Λ| is sufficiently large. Kewywords : Stability, hairy black hole, soliton, Einstein-Yang-Mills, anti de-Sitte

    Regular and Black Hole Solutions in the Einstein-Skyrme Theory with Negative Cosmological Constant

    Full text link
    We study spherically symmetric regular and black hole solutions in the Einstein-Skyrme theory with a negative cosmological constant. The Skyrme field configuration depends on the value of the cosmological constant in a similar manner to effectively varying the gravitational constant. We find the maximum value of the cosmological constant above which there exists no solution. The properties of the solutions are discussed in comparison with the asymptotically flat solutions. The stability is investigated in detail by solving the linearly perturbed equation numerically. We show that there exists a critical value of the cosmological constant above which the solution in the branch representing unstable configuration in the asymptotically flat spacetime turns to be linearly stable.Comment: 10 pages, 9 figures, comments and one reference added, to appear in Class.Quant.Gra

    Geon black holes and quantum field theory

    Full text link
    Black hole spacetimes that are topological geons in the sense of Sorkin can be constructed by taking a quotient of a stationary black hole that has a bifurcate Killing horizon. We discuss the geometric properties of these geon black holes and the Hawking-Unruh effect on them. We in particular show how correlations in the Hawking-Unruh effect reveal to an exterior observer features of the geometry that are classically confined to the regions behind the horizons.Comment: 11 pages. Talk given at the First Mediterranean Conference on Classical and Quantum Gravity, Kolymbari (Crete, Greece), September 2009. Dedicated to Rafael Sorkin. v2: typesetting bug fixe

    Do stringy corrections stabilize coloured black holes?

    Get PDF
    We consider hairy black hole solutions of Einstein-Yang-Mills-Dilaton theory, coupled to a Gauss-Bonnet curvature term, and we study their stability under small, spacetime-dependent perturbations. We demonstrate that the stringy corrections do not remove the sphaleronic instabilities of the coloured black holes with the number of unstable modes being equal to the number of nodes of the background gauge function. In the gravitational sector, and in the limit of an infinitely large horizon, the coloured black holes are also found to be unstable. Similar behaviour is exhibited by the magnetically charged black holes while the bulk of the neutral black holes are proven to be stable under small, gauge-dependent perturbations. Finally, the electrically charged black holes are found to be characterized only by the existence of a gravitational sector of perturbations. As in the case of neutral black holes, we demonstrate that for the bulk of electrically charged black holes no unstable modes arise in this sector.Comment: 17 pages, Revtex, comments and a reference added, version to appear in Physical Review

    Gravitating sphalerons and sphaleron black holes in asymptotically anti-de Sitter spacetime

    Get PDF
    Numerical arguments are presented for the existence of spherically symmetric regular and black hole solutions of the EYMH equations with a negative cosmological constant. These solutions approach asymptotically the anti-de Sitter spacetime. The main properties of the solutions and the differences with respect to the asymptotically flat case are discussed. The instability of the gravitating sphaleron solutions is also proven.Comment: 30 pages, LaTeX, 8 Encapsulated PostScript figure

    Aspects of hairy black holes in spontaneously-broken Einstein-Yang-Mills systems: Stability analysis and Entropy considerations

    Get PDF
    We analyze (3+1)-dimensional black-hole space-times in spontaneously broken Yang-Mills gauge theories that have been recently presented as candidates for an evasion of the scalar-no-hair theorem. Although we show that in principle the conditions for the no-hair theorem do not apply to this case, however we prove that the `spirit' of the theorem is not violated, in the sense that there exist instabilities, in both the sphaleron and gravitational sectors. The instability analysis of the sphaleron sector, which was expected to be unstable for topological reasons, is performed by means of a variational method. As shown, there exist modes in this sector that are unstable against linear perturbations. Instabilities exist also in the gravitational sector. A method for counting the gravitational unstable modes, which utilizes a catastrophe-theoretic approach is presented. The r\^ole of the catastrophe functional is played by the mass functional of the black hole. The Higgs vacuum expectation value (v.e.v.) is used as a control parameter, having a critical value beyond which instabilities are turned on. The (stable) Schwarzschild solution is then understood from this point of view. The catastrophe-theory appproach facilitates enormously a universal stability study of non-Abelian black holes, which goes beyond linearized perturbations. Some elementary entropy considerations are also presented...Comment: Latex file, 50 pages, 2 figures (included as PS files at the end: plot1.ps, plot2.ps

    Five-dimensional Black Hole and Particle Solution with Non-Abelian Gauge Field

    Full text link
    We study the 5-dimensional Einstein-Yang-Mills system with a cosmological constant. Assuming a spherically symmetric spacetime, we find a new analytic black hole solution, which approaches asymptotically "quasi-Minkowski", "quasi anti-de Sitter", or "quasi de Sitter" spacetime depending on the sign of a cosmological constant. Since there is no singularity except for the origin which is covered by an event horizon, we regard it as a localized object. This solution corresponds to a magnetically charged black hole. We also present a singularity-free particle-like solution and a non-trivial black hole solution numerically. Those solutions correspond to the Bartnik-McKinnon solution and a colored black hole with a cosmological constant in the 4-dimensions. We analyze their asymptotic behaviors, spacetime structures and thermodynamical properties. We show that there is a set of stable solutions if a cosmological constant is negative.Comment: 17 pages, 17 figures, submitted to PR

    Abelian Higgs Hair for a Static Charged Black String

    Get PDF
    We study the problem of vortex solutions in the background of an electrically charged black string. We show numerically that the Abelian Higgs field equations in the background of a four-dimensional black string have vortex solutions. These solutions which have axial symmetry, show that the black string can support the Abelian Higgs field as hair. This situation holds also in the case of the extremal black string. We also consider the self-gravity of the Abelian Higgs field and show that the effect of the vortex is to induce a deficit angle in the metric under consideration.Comment: REVTEX4, 12 pages, 6 figures, The version to be appeared in Phys. Rev.

    Vacuum polarization on the brane

    Get PDF
    We compute the renormalized expectation value of the square of a massless, conformally coupled, quantum scalar field on the brane of a higher-dimensional black hole. Working in the AADD brane-world scenario, the extra dimensions are flat and we assume that the compactification radius is large compared with the size of the black hole. The four-dimensional on-brane metric corresponds to a slice through a higher-dimensional Schwarzschild-Tangherlini black hole geometry and depends on the number of bulk space-time dimensions. The quantum scalar field is in a thermal state at the Hawking temperature. An exact, closed-form expression is derived for the renormalized expectation value of the square of the quantum scalar field on the event horizon of the black hole. Outside the event horizon, this renormalized expectation value is computed numerically. The answer depends on the number of bulk space-time dimensions, with a magnitude which increases rapidly as the number of bulk space-time dimensions increases
    • 

    corecore