32 research outputs found

    Role of stem cells in cancer therapy and cancer stem cells: a review

    Get PDF
    For over 30 years, stem cells have been used in the replenishment of blood and immune systems damaged by the cancer cells or during treatment of cancer by chemotherapy or radiotherapy. Apart from their use in the immuno-reconstitution, the stem cells have been reported to contribute in the tissue regeneration and as delivery vehicles in the cancer treatments. The recent concept of 'cancer stem cells' has directed scientific communities towards a different wide new area of research field and possible potential future treatment modalities for the cancer. Aim of this review is primarily focus on the recent developments in the use of the stem cells in the cancer treatments, then to discuss the cancer stem cells, now considered as backbone in the development of the cancer; and their role in carcinogenesis and their implications in the development of possible new cancer treatment options in future

    Lowering the apoptotic threshold in colorectal cancer cells by targeting mitochondria

    Get PDF
    Background: Colorectal cancer is the third most-common cancer and the second most-common cause of cancer related death in UK. Although chemotherapy plays significant role in the treatment of colorectal cancer, morbidity and mortality due to drug resistance and cancer metastasis are yet to be eliminated. Recently, doxycycline has been reported to have cytotoxic and anti-proliferating properties in various cancer cells. In this study, whether doxycycline was apoptosis threshold lowering agent in colorectal cancer cells by targeting mitochondria was answered.Results: This study showed dose-dependent cytotoxic effects of cisplatin, oxaliplatin and doxycycline in HT29 colorectal cancer cells. Doxycycline showed inhibition of cytochrome-c-oxidase activity in these cells over a time period. The pre-treatment of doxycycline reported statistically significant increased cytotoxicity of cisplatin and oxaliplatin compared to cisplatin and oxaliplatin alone. The caspase studies revealed significantly less expression and activity of caspase 3 in HT29 cells pre-treated with doxycycline compared to the cells treated with cisplatin and oxaliplatin alone.Conclusions: It was concluded that doxycycline lowered the apoptotic threshold in HT 29 cells by targeting mitochondria. This also raised possible caspase-independent mechanisms of apoptosis in HT29 cells when pre-treated with doxycycline however this needs further research work

    Cyclooxygenase/lipoxygenase shunting lowers the anti-cancer effect of cyclooxygenase-2 inhibition in colorectal cancer cells

    Get PDF
    BACKGROUND: Arachidonic acid metabolite, generated by cyclooxygenase (COX), is implicated in the colorectal cancer (CRC) pathogenesis. Inhibiting COX may therefore have anti-carcinogenic effects. Results from use of non-steroidal anti-inflammatory drugs inhibiting only COX have been conflicting. It has been postulated that this might result from the shunting of arachidonic acid metabolism to the 5-lipoxygenase (5-LOX) pathway. Cancer cell viability is promoted by 5-LOX through several mechanisms that are similar to those of cyclooxygenase-2 (COX-2). Expression of 5-LOX is upregulated in colorectal adenoma and cancer. The aim of this study was to investigate the shunting of arachidonic acid metabolism to the 5-LOX pathway by cyclooxygenase inhibition and to determine if this process antagonizes the anti-cancer effect in colorectal cancer cells. METHODS: Three colorectal cancer cell lines (HCA7, HT-29 & LoVo) expressing 5-LOX and different levels of COX-2 expression were used. The effects of aspirin (a non-selective COX inhibitor) and rofecoxib (COX-2 selective) on prostaglandin E(2) (PGE(2)) and leukotriene B(4) (LTB(4)) secretion were quantified by ELISA. Proliferation and viability were studied by quantifying double-stranded DNA (dsDNA) content and metabolic activity. Apoptosis was determined by annexin V and propidium iodide staining using confocal microscopy, and caspase-3/7 activity by fluorescent substrate assay. RESULTS: COX inhibitors suppressed PGE(2) production but enhanced LTB(4) secretion in COX-2 expressing cell lines (P <0.001). The level of COX-2 expression in colorectal cancer cells did not significantly influence the anti-proliferative and pro-apoptotic effects of COX inhibitors due to the shunting mechanism. CONCLUSIONS: This study provides evidence of shunting between COX and 5-LOX pathways in the presence of unilateral inhibition, and may explain the conflicting anti-carcinogenic effects reported with use of COX inhibitors

    Role of insulin-like growth factor binding protein-4 in prevention of colon cancer

    Get PDF
    Insulin-like growth factors (IGFs) are important for the proliferation of cancer cells. One of their binding proteins, known as insulin-like growth factor binding protein -4 (IGFBP-4) is well known for its inhibitory action on IGFs in vitro. We assessed the effect of IGFBP-4 in prevention of development of colon cancer in vivo

    Clinical Potential of Quantum Dots

    Get PDF
    Advances in nanotechnology have led to the development of novel fluorescent probes called quantum dots. Quantum dots have revolutionalized the processes of tagging molecules within research settings and are improving sentinel lymph node mapping and identification in vivo studies. As the unique physical and chemical properties of these fluorescent probes are being unraveled, new potential methods of early cancer detection, rapid spread and therapeutic management, that is, photodynamic therapy are being explored. Encouraging results of optical and real time identification of sentinel lymph nodes and lymph flow using quantum dots in vivo models are emerging. Quantum dots have also superseded many of the limitations of organic fluorophores and are a promising alternative as a research tool. In this review, we examine the promising clinical potential of quantum dots, their hindrances for clinical use and the current progress in abrogating their inherent toxicity

    Inducing apoptosis of human colon cancer cells by an IGF-I D domain analogue peptide

    Get PDF
    Background: The resistance of tumour cells to apoptosis is a major contributor to the limited effectiveness of chemotherapies. Insulin-like growth factor I (IGF-I) has potential to protect cancer cells from variety of apoptotic challenges. This study was carried out to investigate the effect of a novel IGF-I receptor antagonist on apoptosis in colon cancer cells.Results: We have designed and synthesised a novel antagonist of IGF-I receptor. The effect of this antagonist on human colon cancer cell proliferation was examined by a non-radioactive assay; the apoptosis was revealed by determining the activities of cellular caspases3/7, 8 and 9. The apoptosis pathways were investigated by examining the levels of pro-apoptosis proteins with Western blotting. Following 40 hours treatment with the novel antagonist peptide, colon cancer cell Caspase 3/7 activities increased 2-7 times; Caspase 8 activities increased 2-5 times and Caspase 9 increased 1.2-1.6 times. The proliferation of cancer cell was inhibited by 14-15%. The data showed that the antagonist induced colon cancer cell apoptosis and inhibited cancer cell proliferation. The different changes of Caspase 3/7, 8 and 9 activities suggested that the extrinsic pathways may play a major role in the antagonist peptide-induced apoptosis.Conclusion: This is the first report on this novel antagonist to induce human colon cancer cell apoptosis and inhibit cancer cell proliferation. These results suggest that IGF-I receptor antagonists may have the potential to be developed as a novel therapy for colon cancers in the future

    Dual Role of Autophagy in Colon Cancer Cell Survival

    Full text link

    IGF-I activates caspases 3/7, 8 and 9 but does not induce cell death in colorectal cancer cells

    Get PDF
    Background: Colorectal cancer is the third most common cancer in the western world. Chemotherapy is often ineffective to treat the advanced colorectal cancers due to the chemoresistance. A major contributor to chemo-resistance is tumour-derived inhibition or avoidance of apoptosis. Insulin-like growth factor I (IGF-I) has been known to play a prominent role in colorectal cancer development and progression. The role of IGF-I in cancer cell apoptosis is not completely understood.Methods: Using three colorectal cancer cell lines and one muscle cell line, associations between IGF-I and activities of caspase 3/7, 8 and 9 have been examined; the role of insulin-like growth factor I receptor (IGF-IR) in the caspase activation has been investigated.Results: The results show that exogenous IGF-I significantly increases activity of caspases 3/7, 8 and 9 in all cell lines used; blocking IGF-I receptor reduce IGF-I-induced caspase activation. Further studies demonstrate that IGF-I induced caspase activation does not result in cell death. This is the first report to show that while IGF-I activates caspases 3/7, 8 and 9 it does not cause colorectal cancer cell death.Conclusion: The study suggests that caspase activation is not synonymous with apoptosis and that activation of caspases may not necessarily induce cell death
    corecore