12,025 research outputs found
A program for calculating optimum dimensions of alpha radioisotope capsules exposed to varying stress and temperature
Method and computer program for calculating creep and optimizing dimensions of capsules filled with alpha-emitting radioisotopes and exposed to varying stress and temperatur
Anomalous Spin Polarization of GaAs Two-Dimensional Hole Systems
We report measurements and calculations of the spin-subband depopulation,
induced by a parallel magnetic field, of dilute GaAs two-dimensional (2D) hole
systems. The results reveal that the shape of the confining potential
dramatically affects the values of in-plane magnetic field at which the upper
spin subband is depopulated. Most surprisingly, unlike 2D electron systems, the
carrier-carrier interaction in 2D hole systems does not significantly enhance
the spin susceptibility. We interpret our findings using a multipole expansion
of the spin density matrix, and suggest that the suppression of the enhancement
is related to the holes' band structure and effective spin j=3/2.Comment: 6 pages, 4 figures, substantially extended discussion of result
Data-driven PDE discovery with evolutionary approach
The data-driven models allow one to define the model structure in cases when
a priori information is not sufficient to build other types of models. The
possible way to obtain physical interpretation is the data-driven differential
equation discovery techniques. The existing methods of PDE (partial derivative
equations) discovery are bound with the sparse regression. However, sparse
regression is restricting the resulting model form, since the terms for PDE are
defined before regression. The evolutionary approach described in the article
has a symbolic regression as the background instead and thus has fewer
restrictions on the PDE form. The evolutionary method of PDE discovery (EPDE)
is described and tested on several canonical PDEs. The question of robustness
is examined on a noised data example
Static inverters which sum a plurality of waves Patent
Describing static inverter with single or multiple phase outpu
Invariant expansion for the trigonal band structure of graphene
We present a symmetry analysis of the trigonal band structure in graphene,
elucidating the transformational properties of the underlying basis functions
and the crucial role of time-reversal invariance. Group theory is used to
derive an invariant expansion of the Hamiltonian for electron states near the K
points of the graphene Brillouin zone. Besides yielding the characteristic
k-linear dispersion and higher-order corrections to it, this approach enables
the systematic incorporation of all terms arising from external electric and
magnetic fields, strain, and spin-orbit coupling up to any desired order.
Several new contributions are found, in addition to reproducing results
obtained previously within tight-binding calculations. Physical ramifications
of these new terms are discussed.Comment: 10 pages, 1 figure; expanded version with more details and additional
result
Spin Density Matrix of Spin-3/2 Hole Systems
For hole systems with an effective spin j=3/2, we present an invariant
decomposition of the spin density matrix that can be interpreted as a multipole
expansion. The charge density corresponds to the monopole moment and the spin
polarization due to a magnetic field corresponds to a dipole moment while heavy
hole-light hole splitting can be interpreted as a quadrupole moment. For quasi
two-dimensional hole systems in the presence of an in-plane magnetic field B
the spin polarization is a higher-order effect that is typically much smaller
than one even if the minority spin subband is completely depopulated. On the
other hand, the field B can induce a substantial octupole moment which is a
unique feature of j=3/2 hole systems.Comment: 8 pages, 1 figure, 3 table
Microscopic origin of Magnetic Ferroelectrics in Nonlinear Multiferroics
A simple but general microscopic mechanism to understand the interplay
between the electric and magnetic degrees of freedom is developed. Within this
mechanism, the magnetic structure generates an electric current which induce an
counterbalance electric current from the spin orbital coupling. When the
magnetic structure is described by a single order parameter, the electric
polarization is determined by the single spin orbital coupling parameter, and
the material is predicted to be a half insulator. This mechanism provides a
simple estimation of the value of ferroelectricity and sets a physical
limitation as well.Comment: 4 pages, 1 figur
Biochemical characterization of recombinant isocitrate dehydrogenase and its putative role in the physiology of an acidophilic micrarchaeon
Despite several discoveries in recent years, the physiology of acidophilic Micrarchaeota, such as “Candidatus Micrarchaeum harzensis A_DKE”, remains largely enigmatic, as they highly express numerous genes encoding hypothetical proteins. Due to a lacking genetic system, it is difficult to elucidate the biological function of the corresponding proteins and heterologous expression is required. In order to prove the viability of this approach, A_DKE’s isocitrate dehydrogenase (MhIDH) was recombinantly produced in Escherichia coli and purified to electrophoretic homogeneity for biochemical characterization. MhIDH showed optimal activity around pH 8 and appeared to be specific for NADP yet promiscuous regarding divalent cations as cofactors. Kinetic studies showed K-values of 53.03 ± 5.63 µM and 1.94 ± 0.12 mM and k-values of 38.48 ± 1.62 and 43.99 ± 1.46 s resulting in k/K-values of 725 ± 107.62 and 22.69 ± 2.15 mM s for DL-isocitrate and NADP, respectively. MhIDH’s exceptionally low affinity for NADP, potentially limiting its reaction rate, can likely be attributed to the presence of a proline residue in the NADP binding pocket, which might cause a decrease in hydrogen bonding of the cofactor and a distortion of local secondary structure
Coherent optical transfer of Feshbach molecules to a lower vibrational state
Using the technique of stimulated Raman adiabatic passage (STIRAP) we have
coherently transferred ultracold 87Rb2 Feshbach molecules into a more deeply
bound vibrational quantum level. Our measurements indicate a high transfer
efficiency of up to 87%. As the molecules are held in an optical lattice with
not more than a single molecule per lattice site, inelastic collisions between
the molecules are suppressed and we observe long molecular lifetimes of about 1
s. Using STIRAP we have created quantum superpositions of the two molecular
states and tested their coherence interferometrically. These results represent
an important step towards Bose-Einstein condensation (BEC) of molecules in the
vibrational ground state.Comment: 4 pages, 5 figure
- …