146 research outputs found

    Superconducting weak bonds at grain boundaries in MgB2

    Get PDF
    The possibility of preparing bicrystalline Josephson junctions and bolometers based on superconducting MgB2 on specially prepared bicrystalline MgO substrates is investigated. Microbridges 0.85–6.00 μm in width, intersecting the bicrystalline interface, are formed in epitaxial bicrystalline MgB2 films grown on these substrates. It is found that annealing of bicrystalline samples in oxygen leads to a systematic decrease in the critical current, an increase in the temperature width of the superconducting transition region, and to an improvement of the current-voltage (IV) characteristic, which becomes close in shape to the IV characteristic of a Josephson junction. The response of such a junction to radiation at a frequency of 110 GHz with an amplitude attaining 0.5 mV is measured

    Noise properties of high-T-c superconducting flux transformers fabricated using chemical-mechanical polishing

    Get PDF
    Reproducible high-temperature superconducting multilayer flux transformers were fabricated using chemical mechanical polishing. The measured magnetic field noise of the flip-chip magnetometer based on one such flux transformer with a 9 x 9 mm(2) pickup loop coupled to a bicrystal dc SQUID was 15 fT/Hz(1/2) above 2 kHz. We present an investigation of excess 1/f noise observed at low frequencies and its relationship with the microstructure of the interlayer connections within the flux transformer. The developed high-T-c SQUID magnetometers may be advantageous in ultra-low field magnetic resonance imaging and, with improved low frequency noise, magnetoencephalography applications

    Pulsed laser deposition of thin YBCO films on faceted YSZ single crystal fibers

    Get PDF
    Flexible rods of single crystals of 9% Y2O 3-stabilized ZrO2 (YSZ) were used as substrates for deposition of high-critical temperature superconducting (HTS) thin films. YSZ fibers were prepared by mini-pedestal method with laser heating and had average diameter of 300 micrometers and 30 mm length. X-ray diffraction analysis demonstrated high crystalline quality of obtained fibers and also indicated the presence of 15° deviation of the fiber axis from the [001] YSZ direction. Thin YBa2Cu3O7-x films were grown by pulsed laser deposition on YSZ rods using CeO2 buffer layer. Films have shown high critical temperature of 90 K with sharp superconducting transition. Critical current density was estimated to about 3×104 A/cm 2 at 80 K. Temperature dependence of critical current density suggests granular structure of films with grain size about several microns. Our results demonstrate feasibility of flexible YSZ fibers coated by HTS thin films for practical use

    SQUID magnetometer based on Grooved Dayem nanobridges and a flux transformer

    Full text link
    We report noise measurements performed on a SQUID magnetometer implementing Grooved Dayem nanobridge of YBCO as weak-links. The SQUID shows magnetic flux noise as low as 10 μΦ0\mu \Phi_0/Hz0.5^{0.5}. The magnetometer is realized by coupling the SQUID to a flux transformer with a two-level coupling scheme using a flip-chip approach. This improves the effective area of the SQUID and result in a magnetic field noise of 50 fT/Hz0.5^{0.5} at T=77 K.Comment: 4 pages, 4 figure

    Nanopatterning of weak links in superconducting oxide interfaces

    Get PDF
    The interface between two wide band-gap insulators, LaAlO3 and SrTiO3 (LAO/STO), hosts a quasi-two-dimensional electron gas (q2DEG), two-dimensional superconductivity, ferromagnetism, and giant Rashba spin-orbit coupling. The co-existence of two-dimensional superconductivity with gate-tunable spin-orbit coupling and multiband occupation is of particular interest for the realization of unconventional superconducting pairing. To investigate the symmetry of the superconducting order parameter, phase sensitive measurements of the Josephson effect are required. We describe an approach for the fabrication of artificial superconducting weak links at the LAO/STO interface using direct high-resolution electron beam lithography and low-energy argon ion beam irradiation. The method does not require lift-off steps or sacrificial layers. Therefore, resolution is only limited by the electron beam lithography and pattern transfer. We have realized superconducting weak links with a barrier thickness of 30–100 nm. The barrier transparency of the weak links can be controlled by the irradiation dose and further tuned by a gate voltage. Our results open up new possibilities for the realization of quantum devices in oxide interfaces

    The role of kinetic inductance on the performance of YBCO SQUID magnetometers

    Get PDF
    Inductance is a key parameter when optimizing the performance of superconducting quantum interference device (SQUID) magnetometers made from the high temperature superconductor YBa2Cu3O7-x (YBCO) because lower SQUID inductance L leads to lower flux noise, but also weaker coupling to the pickup loop. In order to optimize the SQUID design, we combine inductance simulations and measurements to extract the different inductance contributions, and measure the dependence of the transfer function V Φ and flux noise on L. A comparison between two samples shows that the kinetic inductance contribution varies strongly with film quality, hence making inductance measurements a crucial part of the SQUID characterization. Thanks to the improved estimation of the kinetic inductance contribution, previously found discrepancies between theoretical estimates and measured values of V Φ and could to a large extent be avoided. We then use the measurements and improved theoretical estimations to optimize the SQUID geometry and reach a noise level of = 44 fT/√SRC="sustab6014ieqn4.gi for the best SQUID magnetometer with a 8.6 mm 7 9.2 mm directly coupled pickup loop. Lastly, we demonstrate a method for reliable one-time sensor calibration that is constant in a temperature range of several kelvin despite the presence of temperature dependent coupling contributions, such as the kinetic inductance. The found variability of the kinetic inductance contribution has implications not only for the design of YBCO SQUID magnetometers, but for all narrow linewidth SQUID-based devices operated close to their critical temperature

    Retention of Electronic Conductivity in LaAlO3/SrTiO3 Nanostructures Using a SrCuO2 Capping Layer

    Get PDF
    The interface between two wide band-gap insulators, LaAlO3 and SrTiO3 (LAO/STO) offers a unique playground to study the interplay and competitions between different ordering phenomena in a strongly correlated two- dimensional electron gas. Recent studies of the LAO/STO interface reveal the inhomogeneous nature of the 2DEG that strongly influences electrical-transport properties. Nanowires needed in future applications may be adversely affected, and our aim is, thus, to produce a more homogeneous electron gas. In this work, we demonstrate that nanostructures fabricated in the quasi-2DEG at the LaAlO3/SrTiO3 interface, capped with a SrCuO2 layer, retain their electrical resistivity and mobility independent of the structure size, ranging from 100 nm to 30 mu m. This is in contrast to noncapped LAO/STO structures, where the room-temperature electrical resistivity significantly increases when the structure size becomes smaller than 1 mu m. High-resolution intermodulation electrostatic force microscopy reveals an inhomogeneous surface potential with "puddles" of a characteristic size of 130 nm in the noncapped samples and a more uniform surface potential with a larger characteristic size of the puddles in the capped samples. In addition, capped structures show superconductivity below 200 mK and nonlinear currentvoltage characteristics with a clear critical current observed up to 700 mK. Our findings shed light on the complicated nature of the 2DEG at the LAO/STO interface and may also be used for the design of electronic devices

    On-scalp MEG sensor localization using magnetic dipole-like coils: A method for highly accurate co-registration

    Get PDF
    Source modelling in magnetoencephalography (MEG) requires precise co-registration of the sensor array and the anatomical structure of the measured individual\u27s head. In conventional MEG, the positions and orientations of the sensors relative to each other are fixed and known beforehand, requiring only localization of the head relative to the sensor array. Since the sensors in on-scalp MEG are positioned on the scalp, locations of the individual sensors depend on the subject\u27s head shape and size. The positions and orientations of on-scalp sensors must therefore be measured a every recording. This can be achieved by inverting conventional head localization, localizing the sensors relative to the head - rather than the other way around. In this study we present a practical method for localizing sensors using magnetic dipole-like coils attached to the subject\u27s head. We implement and evaluate the method in a set of on-scalp MEG recordings using a 7-channel on-scalp MEG system based on high critical temperature superconducting quantum interference devices (high-T-c SQUIDs). The method allows individually localizing the sensor positions, orientations, and responsivities with high accuracy using only a short averaging time (<= 2 mm, < 3 degrees and < 3%, respectively, with 1-s averaging), enabling continuous sensor localization. Calibrating and jointly localizing the sensor array can further improve the accuracy of position and orientation (< 1 mm and < 1 degrees, respectively, with 1-s coil recordings). We demonstrate source localization of on-scalp recorded somatosensory evoked activity based on coregistration with our method. Equivalent current dipole fits of the evoked responses corresponded well (within 4.2 mm) with those based on a commercial, whole-head MEG system

    Detection of interictal epileptiform discharges: A comparison of on-scalp MEG and conventional MEG measurements

    Get PDF
    Objective: Conventional MEG provides an unsurpassed ability to, non-invasively, detect epileptic activity. However, highly resolved information on small neuronal populations required in epilepsy diagnostics is lost and can be detected only intracranially. Next-generation on-scalp magnetencephalography (MEG) sensors aim to retrieve information unavailable to conventional non-invasive brain imaging techniques. To evaluate the benefits of on-scalp MEG in epilepsy, we performed the first-ever such measurement on an epilepsy patient. Methods: Conducted as a benchmarking study focusing on interictal epileptiform discharge (IED) detectability, an on-scalp high-temperature superconducting quantum interference device magnetometer (high-Tc SQUID) system was compared to a conventional, low-temperature SQUID system. Coregistration of electroencephalopraphy (EEG) was performed. A novel machine learning-based IED-detection algorithm was developed to aid identification of on-scalp MEG unique IEDs. Results: Conventional MEG contained 24 IEDs. On-scalp MEG revealed 47 IEDs (16 co-registered by EEG, 31 unique to the on-scalp MEG recording). Conclusion: Our results indicate that on-scalp MEG might capture IEDs not seen by other non-invasive modalities. Significance: On-scalp MEG has the potential of improving non-invasive epilepsy evaluation. (C) 2020 International Federation of Clinical Neurophysiology. Published by Elsevier B.V

    The role of oxygen vacancies in SrTiO3 at the LaAlO3/SrTiO3 interface

    Full text link
    Strontium titanate, SrTiO3, a widely used substrate material for electronic oxide thin film devices, has provided many interesting features. In a combination with a similar oxide material, LaAlO3, it has recently received great interest. It was suggested that two-dimensional electron gas is formed at the interface between SrTiO3 and LaAlO3, resulting in high electrical conductivity and mobility. In this report we demonstrate that the transport properties in those heterostructures are very sensitive to the deposition parameters during thin film growth. Using cathode- and photoluminescence studies in conjunction with measurements of electrical transport properties and microstructure we show that the electronic properties observed at a LaAlO3/SrTiO3 interface can be explained by oxygen reduced SrTiO3. In addition, we demonstrate that oxygen can be pushed in and out of the sample, but that re-oxygenation of an initially oxygen depleted LaAlO3/SrTiO3 heterostructure is partly prevented by the presence of the film.Comment: 19 pages, 5 figure
    • …
    corecore