2 research outputs found

    Fingerprinting fluid source in calcite veins: combining LA-ICP-MS U-Pb calcite dating with trace elements and clumped isotope palaeothermometry

    Get PDF
    Application of geochemical proxies to vein minerals - particularly calcite - can fingerprint the source of fluids controlling various important geological processes from seismicity to geothermal systems. Determining fluid source, e.g. meteoric, marine, magmatic or metamorphic waters, can be challenging when using only trace elements and stable isotopes as different fluids can have overlapping geochemical characteristics, such as δ18O. In this contribution we show that by combining the recently developed LA-ICP-MS U-Pb calcite geochronometer with stable isotopes (including clumped isotope palaeothermometry) and trace element analysis, the fluid source of veins can be more readily determined. Calcite veins hosted in the Devonian Montrose Volcanic Formation at Lunan Bay in the Midland Valley Terrane of Central Scotland were used as a case study. δD values of fluid inclusions in the calcite, and parent fluid δ18O values reconstructed from clumped isotope palaeothermometry, gave values which could represent a range of fluid sources: metamorphic or magmatic fluids, or surface waters which had undergone much fluid-rock interaction. Trace elements showed no distinctive patterns and shed no further light on fluid source. LA-ICP-MS U-Pb dating determined the vein calcite precipitation age – 318±30 Ma – which rule out metamorphic or magmatic fluid sources as no metamorphic or magmatic activity was occurring in the area at this time. The vein fluid source was therefore a surface water (meteoric based on paleogeographic reconstruction) which had undergone significant water-rock interaction. This study highlights the importance of combining the recently developed LA-ICP-MS U-Pb calcite geochronometer with stable isotopes and trace elements to help determine fluid sources of veins, and indeed any geological feature where calcite precipitated from a fluid that may have resided in the crust for a period of time (e.g. fault precipitates or cements)

    Meltwater pulse recorded in Last Interglacial mollusk shells from Bermuda

    No full text
    The warm climate of Bermuda today is modulated by the nearby presence of the Gulf Stream current. However, iceberg scours in the Florida Strait and the presence of ice-rafted debris in Bermuda Rise sediments indicate that, during the last deglaciation, icebergs discharged from the Laurentide Ice Sheet traveled as far south as subtropical latitudes. We present evidence that an event of similar magnitude affected the subtropics during the Last Interglacial, potentially due to melting of the Greenland Ice Sheet. Using the clumped isotope paleothermometer, we found temperatures ~10°C colder and seawater δ18O values ~2‰ lower than modern in Last Interglacial Cittarium pica shells from Grape Bay, Bermuda. In contrast, Last Interglacial shells from Rocky Bay, Bermuda, record temperatures only slightly colder and seawater δ18O values similar to modern, likely representing more typical Last Interglacial conditions in Bermuda outside of a meltwater event. The significantly colder ocean temperatures observed in Grape Bay samples illustrate the extreme sensitivity of Bermudian climate to broad-scale ocean circulation changes. They indicate routine meltwater transport in the North Atlantic to near-equatorial latitudes, which would likely have resulted in disruption of the Atlantic Meridional Overturning Circulation. These data demonstrate that future melting of the Greenland Ice Sheet, a potential source of the Last Interglacial meltwater event, could have dramatic climate effects outside of the high latitudes
    corecore