8 research outputs found

    A retinal origin of nystagmus—a perspective

    Get PDF
    Congenital nystagmus is a condition where the eyes of patients oscillate, mostly horizontally, with a frequency of between 2 and 10 Hz. Historically, nystagmus is believed to be caused by a maladaptation of the oculomotor system and is thus considered a disease of the brain stem. However, we have recently shown that congenital nystagmus associated with congenital stationary night blindness is caused by synchronously oscillating retinal ganglion cells. In this perspective article, we discuss how some details of nystagmus can be accounted for by the retinal mechanism we propose

    Vestibular role of KCNQ4 and KCNQ5 K+ channels revealed by mouse models

    Get PDF
    The function of sensory hair cells of the cochlea and vestibular organs depends on an influx of K+ through apical mechanosensitive ion channels and its subsequent removal over their basolateral membrane. The KCNQ4 (Kv7.4) K+ channel, which is mutated in DFNA2 human hearing loss, is expressed in the basal membrane of cochlear outer hair cells (OHCs) where it may mediate K+ efflux. Like the related K+ channel KCNQ5 (Kv7.5), KCNQ4 is also found at calyx terminals ensheathing type I vestibular hair cells where it may be localized pre- or postsynaptically. Making use of Kcnq4-/- mice lacking KCNQ4, as well as Kcnq4dn/dn and Kcnq5dn/dn mice expressing dominant negative channel mutants, we now show unambiguously that in adult mice both channels reside in postsynaptic calyx-forming neurons, but cannot be detected in the innervated hair cells. Accordingly whole-cell currents of vestibular hair cells did not differ between genotypes. Neither Kcnq4-/-, Kcnq5dn/dn nor Kcnq4-/-/Kcnq5dn/dn double mutant mice displayed circling behavior found with severe vestibular impairment. However, a milder form of vestibular dysfunction was apparent from altered vestibulo-ocular reflexes in Kcnq4-/-/Kcnq5dn/dn and Kcnq4-/- mice. The larger impact of KCNQ4 may result from its preferential expression in central zones of maculae and cristae, which are innervated by phasic neurons that are more sensitive than the tonic neurons predominantly present in the surrounding peripheral zones where KCNQ5 is found. The impact of postsynaptic KCNQ4 on vestibular function may be related to K+ removal and modulation of synaptic transmission.Fil: Spitzmaul, Guillermo Federico. Leibniz Institut Fur Molekulare Pharmakologie; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigaciones Bioquímicas Bahía Blanca (i); ArgentinaFil: Tolosa, Leonardo. Netherlands Institute For Neuroscience; Países BajosFil: Winkelman, Beerend H. J.. Netherlands Institute For Neuroscience; Países BajosFil: Heidenreich, Matthias. Leibniz_Institut Fur Molekulare Pharmakologie (Fmp) ; AlemaniaFil: Frens, Maartens. Department Of Neurosciences, Erasmus; Países BajosFil: Chabbert, Christian. Institut Des Neurosciences De Montpellier; FranciaFil: de Zeeuw, Chris I.. Netherlands Institute For Neuroscience; Países BajosFil: Jentsch, Thomas J.. Charité-Universitätsmedizin. Cluster of Excellence NeuroCure; Alemani

    Vestibular role of KCNQ4 and KCNQ5 K+ channels revealed by mouse models

    Get PDF
    The function of sensory hair cells of the cochlea and vestibular organs depends on an influx of K+ through apical mechanosensitive ion channels and its subsequent removal over their basolateral membrane. The KCNQ4 (Kv7.4) K+ channel, which is mutated in DFNA2 human hearing loss, is expressed in the basal membrane of cochlear outer hair cells (OHCs) where it may mediate K+ efflux. Like the related K+ channel KCNQ5 (Kv7.5), KCNQ4 is also found at calyx terminals ensheathing type I vestibular hair cells where it may be localized pre- or postsynaptically. Making use of Kcnq4-/- mice lacking KCNQ4, as well as Kcnq4dn/dn and Kcnq5dn/dn mice expressing dominant negative channel mutants, we now show unambiguously that in adult mice both channels reside in postsynaptic calyx-forming neurons, but cannot be detected in the innervated hair cells. Accordingly whole-cell currents of vestibular hair cells did not differ between genotypes. Neither Kcnq4-/-, Kcnq5dn/dn nor Kcnq4-/-/Kcnq5dn/dn double mutant mice displayed circling behavior found with severe vestibular impairment. However, a milder form of vestibular dysfunction was apparent from altered vestibulo-ocular reflexes in Kcnq4-/-/Kcnq5dn/dn and Kcnq4-/- mice. The larger impact of KCNQ4 may result from its preferential expression in central zones of maculae and cristae, which are innervated by phasic neurons that are more sensitive than the tonic neurons predominantly present in the surrounding peripheral zones where KCNQ5 is found. The impact of postsynaptic KCNQ4 on vestibular function may be related to K+ removal and modulation of synaptic transmission.Fil: Spitzmaul, Guillermo Federico. Leibniz Institut Fur Molekulare Pharmakologie; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigaciones Bioquímicas Bahía Blanca (i); ArgentinaFil: Tolosa, Leonardo. Netherlands Institute For Neuroscience; Países BajosFil: Winkelman, Beerend H. J.. Netherlands Institute For Neuroscience; Países BajosFil: Heidenreich, Matthias. Leibniz_Institut Fur Molekulare Pharmakologie (Fmp) ; AlemaniaFil: Frens, Maartens. Department Of Neurosciences, Erasmus; Países BajosFil: Chabbert, Christian. Institut Des Neurosciences De Montpellier; FranciaFil: de Zeeuw, Chris I.. Netherlands Institute For Neuroscience; Países BajosFil: Jentsch, Thomas J.. Charité-Universitätsmedizin. Cluster of Excellence NeuroCure; Alemani

    Nystagmus in patients with congenital stationary night blindness (CSNB) originates from synchronously firing retinal ganglion cells.

    No full text
    Congenital nystagmus, involuntary oscillating small eye movements, is commonly thought to originate from aberrant interactions between brainstem nuclei and foveal cortical pathways. Here, we investigated whether nystagmus associated with congenital stationary night blindness (CSNB) results from primary deficits in the retina. We found that CSNB patients as well as an animal model (nob mice), both of which lacked functional nyctalopin protein (NYX, nyx) in ON bipolar cells (BCs) at their synapse with photoreceptors, showed oscillating eye movements at a frequency of 4-7 Hz. nob ON direction-selective ganglion cells (DSGCs), which detect global motion and project to the accessory optic system (AOS), oscillated with the same frequency as their eyes. In the dark, individual ganglion cells (GCs) oscillated asynchronously, but their oscillations became synchronized by light stimulation. Likewise, both patient and nob mice oscillating eye movements were only present in the light when contrast was present. Retinal pharmacological and genetic manipulations that blocked nob GC oscillations also eliminated their oscillating eye movements, and retinal pharmacological manipulations that reduced the oscillation frequency of nob GCs also reduced the oscillation frequency of their eye movements. We conclude that, in nob mice, synchronized oscillations of retinal GCs, most likely the ON-DCGCs, cause nystagmus with properties similar to those associated with CSNB in humans. These results show that the nob mouse is the first animal model for a form of congenital nystagmus, paving the way for development of therapeutic strategies

    Nystagmus in patients with congenital stationary night blindness (CSNB) originates from synchronously firing retinal ganglion cells

    No full text
    Congenital nystagmus, involuntary oscillating small eye movements, is commonly thought to originate from aberrant interactions between brainstem nuclei and foveal cortical pathways. Here, we investigated whether nystagmus associated with congenital stationary night blindness (CSNB) results from primary deficits in the retina. We found that CSNB patients as well as an animal model (nob mice), both of which lacked functional nyctalopin protein (NYX, nyx) in ON bipolar cells (BCs) at their synapse with photoreceptors, showed oscillating eye movements at a frequency of 4-7 Hz. nob ON direction-selective ganglion cells (DSGCs), which detect global motion and project to the accessory optic system (AOS), oscillated with the same frequency as their eyes. In the dark, individual ganglion cells (GCs) oscillated asynchronously, but their oscillations became synchronized by light stimulation. Likewise, both patient and nob mice oscillating eye movements were only present in the light when contrast was present. Retinal pharmacological and genetic manipulations that blocked nob GC oscillations also eliminated their oscillating eye movements, and retinal pharmacological manipulations that reduced the oscillation frequency of nob GCs also reduced the oscillation frequency of their eye movements. We conclude that, in nob mice, synchronized oscillations of retinal GCs, most likely the ON-DCGCs, cause nystagmus with properties similar to those associated with CSNB in humans. These results show that the nob mouse is the first animal model for a form of congenital nystagmus, paving the way for development of therapeutic strategies

    Myopia control in Mendelian forms of myopia

    No full text
    PURPOSE: To study the effectiveness of high-dose atropine for reducing eye growth in Mendelian myopia in children and mice. METHODS: We studied the effect of high-dose atropine in children with progressive myopia with and without a monogenetic cause. Children were matched for age and axial length (AL) in their first year of treatment. We considered annual AL progression rate as the outcome and compared rates with percentile charts of an untreated general population. We treated C57BL/6J mice featuring the myopic phenotype of Donnai-Barrow syndrome by selective inactivation of Lrp2 knock out (KO) and control mice (CTRL) daily with 1% atropine in the left eye and saline in the right eye, from postnatal days 30-56. Ocular biometry was measured using spectral-domain optical coherence tomography. Retinal dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were measured using high-performance liquid chromatography. RESULTS: Children with a Mendelian form of myopia had average baseline spherical equivalent (SE) -7.6 ± 2.5D and AL 25.8 ± 0.3 mm; children with non-Mendelian myopia had average SE -7.3 ± 2.9 D and AL 25.6 ± 0.9 mm. During atropine treatment, the annual AL progression rate was 0.37 ± 0.08 and 0.39 ± 0.05 mm in the Mendelian myopes and non-Mendelian myopes, respectively. Compared with progression rates of untreated general population (0.47 mm/year), atropine reduced AL progression with 27% in Mendelian myopes and 23% in non-Mendelian myopes. Atropine significantly reduced AL growth in both KO and CTRL mice (male, KO: -40 ± 15; CTRL: -42 ± 10; female, KO: -53 ± 15; CTRL: -62 ± 3 μm). The DA and DOPAC levels 2 and 24 h after atropine treatment were slightly, albeit non-significantly, elevated. CONCLUSIONS: High-dose atropine had the same effect on AL in high myopic children with and without a known monogenetic cause. In mice featuring a severe form of Mendelian myopia, atropine reduced AL progression. This suggests that atropine can reduce myopia progression even in the presence of a strong monogenic driver
    corecore