513 research outputs found

    NICMOS Imaging of the Dusty Microjansky Radio Source VLA J123642+621331 at z = 4.424

    Get PDF
    We present the discovery of a radio galaxy at a likely redshift of z = 4.424 in one of the flanking fields of the Hubble Deep Field. Radio observations with the VLA and MERLIN centered on the HDF yielded a complete sample of microjansky radio sources, of which about 20% have no optical counterpart to I < 25 mag. In this Letter, we address the possible nature of one of these sources, through deep HST NICMOS images in the F110W (J) and F160W (H) filters. VLA J123642+621331 has a single emission line at 6595-A, which we identify with Lyman-alpha at z = 4.424. We argue that this faint (H = 23.9 mag), compact (r = 0.2 arcsec), red (I - K = 2.0) object is most likely a dusty, star-forming galaxy with an embedded active nucleus.Comment: Accepted for publication in Astrophysical Journal Letters. 11 pages, 4 figures, uses aastex v5.0 and psfi

    Tracing Galaxy Assembly: Tadpole Galaxies in the Hubble Ultra Deep Field

    Full text link
    In the Hubble Ultra Deep Field (HUDF) an abundance of galaxies is seen with a knot at one end plus an extended tail, resembling a tadpole. These "tadpole galaxies" appear dynamically unrelaxed--presumably in an early merging state--where tidal interactions likely created the distorted knot-plus-tail morphology. Here we systematically select tadpole galaxies from the HUDF and study their properties as a function of their photometric redshifts. In a companion HUDF variability study, Cohen et al. (2005) revealed a total of 45 variable objects believed to be Active Galactic Nuclei (AGN). Here we show that this faint AGN sample has no overlap with the tadpole galaxy sample, as predicted by theoretical work. The tadpole morphology--combined with the lack of overlap with the variable objects--supports the idea that these galaxies are in the process of an early-stage merger event, i.e., at a stage that likely precedes the "turn-on" of any AGN component and the onset of any point-source variability.Comment: 7 pages, 4 figures. Accepted for publication by Astrophysical Journa

    The Nearby and Extremely Metal-Poor Galaxy CGCG 269-049

    Full text link
    We present Hubble Space Telescope (HST) and Spitzer Space Telescope images and photometry of the extremely metal-poor (Z = 0.03 Z_sol) blue dwarf galaxy CGCG 269-049. The HST images reveal a large population of red giant and asymptotic giant branch stars, ruling out the possibility that the galaxy has recently formed. From the magnitude of the tip of the red giant branch, we measure a distance to CGCG 269-049 of only 4.9 +/- 0.4 Mpc. The spectral energy distribution of the galaxy between ~3.6 - 70 microns is also best fitted by emission from predominantly ~10 Gyr old stars, with a component of thermal dust emission having a temperature of 52 +/- 10 K. The HST and Spitzer photometry indicate that more than 60% of CGCG 269-049's stellar mass consists of stars ~10 Gyr old, similar to other local blue dwarf galaxies. Our HST H-alpha image shows no evidence of a supernova-driven outflow that could be removing metals from the galaxy, nor do we find evidence that such outflows occurred in the past. Taken together with CGCG 269-049's large ratio of neutral hydrogen mass to stellar mass (~10), these results are consistent with recent simulations in which the metal deficiency of local dwarf galaxies results mainly from inefficient star formation, rather than youth or the escape of supernova ejecta.Comment: 35 Pages, 7 Figures, accepted for publication in ApJ; new version corrects errors in Table 1, Figure 3, and related calculations in tex
    • …
    corecore