2 research outputs found

    Pediatric Microdose Study of [14C]Paracetamol to Study Drug Metabolism Using Accelerated Mass Spectrometry: Proof of Concept

    Get PDF
    Results: Ten infants (aged 0.1–83.1 months) were included; one was excluded as he vomited shortly after administration. In nine patients, [14C]AAP and metabolites in blood samples were detectable at expected concentrations: median (range) maximum concentration (Cmax) [14C]AAP 1.68 (0.75–4.76) ng/L, [14C]AAP-Glu 0.88 (0.34–1.55) ng/L, and [14C]AAP-4Sul 0.81 (0.29–2.10) ng/L. Dose-normalized oral [14C]AAP Cmax approached median intravenous average concentrations (Cav): 8.41 mg/L (3.75–23.78 mg/L) and 8.87 mg/L (3.45–12.9 mg/L), respectively.Conclusions: We demonstrate the feasibility of using a [14C]labeled microdose to study AAP pharmacokinetics, including metabolite disposition, in young children.Background: Pediatric drug development is hampered by practical, ethical, and scientific challenges. Microdosing is a promising new method to obtain pharmacokinetic data in children with minimal burden and minimal risk. The use of a labeled oral microdose offers the added benefit to study intestinal and hepatic drug disposition in children already receiving an intravenous therapeutic drug dose for clinical reasons.Methods: In an open-label microdose pharmacokinetic pilot study, infants (0–6 years of age) received a single oral [14C]AAP microdose (3.3 ng/kg, 60 Bq/kg) in addition to intravenous therapeutic doses of AAP (15 mg/kg intravenous every 6 h). Blood samples were taken from an indwelling catheter. AAP blood concentrations were measured by liquid chromatography–tandem mass spectrometry (LC-MS/MS) and [14C]AAP and metabolites ([14C]AAP-Glu and [14C]AAP-4Sul) were measured by accelerator mass spectrometry.Objective: The objective of this study was to present pilot data of an oral [14C]paracetamol [acetaminophen (AAP)] microdosing study as proof of concept to study developmental pharmacokinetics in children

    Toward prediction of efficacy of chemotherapy: A proof of concept study in lung cancer patients using [11C]docetaxel and positron emission tomography

    No full text
    Purpose: Pharmacokinetics of docetaxel can be measured in vivo using positron emission tomography (PET) and a microdose of radiolabeled docetaxel ([11C]docetaxel). The objective of this study was to investigate whether a [11C]docetaxel PET microdosing study could predict tumor uptake of therapeutic doses of docetaxel. Experimental Design: Docetaxel-näve lung cancer patients underwent 2 [11C]docetaxel PET scans; one after bolus injection of [11C]docetaxel and another during combined infusion of [11C]docetaxel and a therapeutic dose of docetaxel (75 mgm 2). Compartmental and spectral analyses were used to quantify [11C]docetaxel tumor kinetics. [11C]docetaxel PET measurements were used to estimate the area under the curve (AUC) of docetaxel in tumors. Tumor response was evaluated using computed tomography scans. Results: Net rates of influx (Ki) of [11C]docetaxel in tumors were comparable during microdosing and therapeutic scans. [11C]docetaxel AUCTumor during the therapeutic scan could be predicted reliably using an impulse response function derived from the microdosing scan together with the plasma curve of [11C]docetaxel during the therapeutic scan. At 90 minutes, the accumulated amount of docetaxel in tumors was less than 1% of the total infused dose of docetaxel. [11C]docetaxel Ki derived from the microdosing scan correlated with AUCTumor of docetaxel (Spearman r = 0.715; P = 0.004) during the therapeutic scan and with tumor response to docetaxel therapy (Spearman r = 0.800; P = 0.010). Conclusions: Microdosing data of [11C]docetaxel PET can be used to predict tumor uptake of docetaxel during chemotherapy. The present study provides a framework for investigating the PET microdosing concept for radiolabeled anticancer drugs in patients
    corecore