130 research outputs found

    Probleme der Standardisierung von Digitalispräparaten

    Get PDF

    Probleme der Standardisierung von Digitalispräparaten

    Get PDF

    Immune-Complex Mimics as a Molecular Platform for Adjuvant-Free Vaccine Delivery

    Get PDF
    Protein-based vaccine development faces the difficult challenge of finding robust yet non-toxic adjuvants suitable for humans. Here, using a molecular engineering approach, we have developed a molecular platform for generating self-adjuvanting immunogens that do not depend on exogenous adjuvants for induction of immune responses. These are based on the concept of Immune Complex Mimics (ICM), structures that are formed between an oligomeric antigen and a monoclonal antibody (mAb) to that antigen. In this way, the roles of antigens and antibodies within the structure of immune complexes are reversed, so that a single monoclonal antibody, rather than polyclonal sera or expensive mAb cocktails can be used. We tested this approach in the context of Mycobacterium tuberculosis (MTB) infection by linking the highly immunogenic and potentially protective Ag85B with the oligomeric Acr (alpha crystallin, HspX) antigen. When combined with an anti-Acr monoclonal antibody, the fusion protein formed ICM which bound to C1q component of the complement system and were readily taken up by antigen-presenting cells in vitro. ICM induced a strong Th1/Th2 mixed type antibody response, which was comparable to cholera toxin adjuvanted antigen, but only moderate levels of T cell proliferation and IFN-γ secretion. Unfortunately, the systemic administration of ICM did not confer statistically significant protection against intranasal MTB challenge, although a small BCG-boosting effect was observed. We conclude that ICM are capable of inducing strong humoral responses to incorporated antigens and may be a suitable vaccination approach for pathogens other than MTB, where antibody-based immunity may play a more protective role

    The histone demethylase UTX regulates the lineage-specific epigenetic program of invariant natural killer T cells

    Get PDF
    Invariant natural killer T cells (iNKT cells) are innate-like lymphocytes that protect against infection, autoimmune disease and cancer. However, little is known about the epigenetic regulation of iNKT cell development. Here we found that the H3K27me3 histone demethylase UTX was an essential cell-intrinsic factor that controlled an iNKT-cell lineage-specific gene-expression program and epigenetic landscape in a demethylase-Activity-dependent manner. UTX-deficient iNKT cells exhibited impaired expression of iNKT cell signature genes due to a decrease in activation-Associated H3K4me3 marks and an increase in repressive H3K27me3 marks within the promoters occupied by UTX. We found that JunB regulated iNKT cell development and that the expression of genes that were targets of both JunB and the iNKT cell master transcription factor PLZF was UTX dependent. We identified iNKT cell super-enhancers and demonstrated that UTX-mediated regulation of super-enhancer accessibility was a key mechanism for commitment to the iNKT cell lineage. Our findings reveal how UTX regulates the development of iNKT cells through multiple epigenetic mechanisms

    Computational Characterization of 3′ Splice Variants in the GFAP Isoform Family

    Get PDF
    Glial fibrillary acidic protein (GFAP) is an intermediate filament (IF) protein specific to central nervous system (CNS) astrocytes. It has been the subject of intense interest due to its association with neurodegenerative diseases, and because of growing evidence that IF proteins not only modulate cellular structure, but also cellular function. Moreover, GFAP has a family of splicing isoforms apparently more complex than that of other CNS IF proteins, consistent with it possessing a range of functional and structural roles. The gene consists of 9 exons, and to date all isoforms associated with 3′ end splicing have been identified from modifications within intron 7, resulting in the generation of exon 7a (GFAPδ/ε) and 7b (GFAPκ). To better understand the nature and functional significance of variation in this region, we used a Bayesian multiple change-point approach to identify conserved regions. This is the first successful application of this method to a single gene – it has previously only been used in whole-genome analyses. We identified several highly or moderately conserved regions throughout the intron 7/7a/7b regions, including untranslated regions and regulatory features, consistent with the biology of GFAP. Several putative unconfirmed features were also identified, including a possible new isoform. We then integrated multiple computational analyses on both the DNA and protein sequences from the mouse, rat and human, showing that the major isoform, GFAPα, has highly conserved structure and features across the three species, whereas the minor isoforms GFAPδ/ε and GFAPκ have low conservation of structure and features at the distal 3′ end, both relative to each other and relative to GFAPα. The overall picture suggests distinct and tightly regulated functions for the 3′ end isoforms, consistent with complex astrocyte biology. The results illustrate a computational approach for characterising splicing isoform families, using both DNA and protein sequences

    CD8 Cells of Patients with Diffuse Cutaneous Leishmaniasis Display Functional Exhaustion: The Latter Is Reversed, In Vitro, by TLR2 Agonists

    Get PDF
    Leishmania mexicana (Lm) causes localized (LCL) and diffuse (DCL) cutaneous leishmaniasis. DCL patients have a poor cellular immune response leading to chronicity. It has been proposed that CD8 T lymphocytes (CD8) play a crucial role in infection clearance, although the role of CD8 cytotoxicity in disease control has not been elucidated. Lesions of DCL patients have been shown to harbor low numbers of CD8, as compared to patients with LCL, and leishmanicidal treatment restores CD8 numbers. The marked response of CD8 towards Leishmania parasites led us to analyze possible functional differences between CD8 from patients with LCL and DCL. We compared IFNγ production, antigen-specific proliferation, and cytotoxicity of CD8 purified from PBMC against autologous macrophages (MO) infected with Leishmania mexicana (MOi). Additionally, we analyzed tissue biopsies from both groups of patients for evidence of cytotoxicity associated with apoptotic cells in the lesions. We found that CD8 cell of DCL patients exhibited low cytotoxicity, low antigen-specific proliferation and low IFNγ production when stimulated with MOi, as compared to LCL patients. Additionally, DCL patients had significantly less TUNEL+ cells in their lesions. These characteristics are similar to cellular “exhaustion” described in chronic infections. We intended to restore the functional capacity of CD8 cells of DCL patients by preincubating them with TLR2 agonists: Lm lipophosphoglycan (LPG) or Pam3Cys. Cytotoxicity against MOi, antigen-specific proliferation and IFNγ production were restored with both stimuli, whereas PD-1 (a molecule associated with cellular exhaustion) expression, was reduced. Our work suggests that CD8 response is associated with control of Lm infection in LCL patients and that chronic infection in DCL patients leads to a state of CD8 functional exhaustion, which could facilitate disease spread. This is the first report that shows the presence of functionally exhausted CD8 T lymphocytes in DCL patients and, additionally, that pre-stimulation with TLR2 ligands can restore the effector mechanisms of CD8 T lymphocytes from DCL patients against Leishmania mexicana-infected macrophages

    Spontaneous focal activation of invariant natural killer T (iNKT) cells in mouse liver and kidney

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Invariant natural killer T (iNKT) cells differ from other T cells by their hyperactive effector T-cell status, in addition to the expression of NK lineage receptors and semi-invariant T-cell receptors. It is generally agreed that the immune phenotype of iNKT cells is maintained by repeated activation in peripheral tissues although no explicit evidence for such iNKT cell activity <it>in vivo </it>has so far been reported.</p> <p>Results</p> <p>We used an interferon (IFN)-γ-inducible cytoplasmic protein, Irga6, as a histological marker for local IFN-γ production. Irga6 was intensely expressed in small foci of liver parenchymal cells and kidney tubular epithelium. Focal Irga6 expression was unaffected by germ-free status or loss of TLR signalling and was totally dependent on IFN-γ secreted by T cells in the centres of expression foci. These were shown to be iNKT cells by diagnostic T cell receptor usage and their activity was lost in both CD1 d and Jα-deficient mice.</p> <p>Conclusions</p> <p>This is the first report that supplies direct evidence for explicit activation events of NKT cells <it>in vivo </it>and raises issues about the triggering mechanism and consequences for immune functions in liver and kidney.</p

    Interferon Gamma Activated Macrophages Kill Mycobacteria by Nitric Oxide Induced Apoptosis

    Get PDF
    Mycobacterium tuberculosis is an intracellular pathogen of macrophages and escapes the macrophages' bactericidal effectors by interfering with phagosome-lysosome fusion. IFN-γ activation renders the macrophages capable of killing intracellular mycobacteria by overcoming the phagosome maturation block, nutrient deprivation and exposure to microbicidal effectors including nitric oxide (NO). While the importance about NO for the control of mycobacterial infection in murine macrophages is well documented, the underlying mechanism has not been revealed yet. In this study we show that IFN-γ induced apoptosis in mycobacteria-infected macrophages, which was strictly dependent on NO. Subsequently, NO-mediated apoptosis resulted in the killing of intracellular mycobacteria independent of autophagy. In fact, killing of mycobacteria was susceptible to the autophagy inhibitor 3-methyladenine (3-MA). However, 3-MA also suppressed NO production, which is an important off-target effect to be considered in autophagy studies using 3-MA. Inhibition of caspase 3/7 activation, as well as NO production, abolished apoptosis and elimination of mycobacteria by IFN-γ activated macrophages. In line with the finding that drug-induced apoptosis kills intracellular mycobacteria in the absence of NO, we identified NO-mediated apoptosis as a new defense mechanism of activated macrophages against M. tuberculosis

    CD36 deficiency attenuates experimental mycobacterial infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Members of the CD36 scavenger receptor family have been implicated as sensors of microbial products that mediate phagocytosis and inflammation in response to a broad range of pathogens. We investigated the role of CD36 in host response to mycobacterial infection.</p> <p>Methods</p> <p>Experimental <it>Mycobacterium bovis </it>Bacillus Calmette-Guérin (BCG) infection in <it>Cd36<sup>+/+ </sup></it>and <it>Cd36<sup>-/- </sup></it>mice, and <it>in vitro </it>co-cultivation of <it>M. tuberculosis</it>, BCG and <it>M. marinum </it>with <it>Cd36<sup>+/+ </sup></it>and <it>Cd36<sup>-/-</sup></it>murine macrophages.</p> <p>Results</p> <p>Using an <it>in vivo </it>model of BCG infection in <it>Cd36<sup>+/+ </sup></it>and <it>Cd36<sup>-/- </sup></it>mice, we found that mycobacterial burden in liver and spleen is reduced (83% lower peak splenic colony forming units, p < 0.001), as well as the density of granulomas, and circulating tumor necrosis factor (TNF) levels in <it>Cd36<sup>-/- </sup></it>animals. Intracellular growth of all three mycobacterial species was reduced in <it>Cd36<sup>-/- </sup></it>relative to wild type <it>Cd36<sup>+/+ </sup></it>macrophages <it>in vitro</it>. This difference was not attributable to alterations in mycobacterial uptake, macrophage viability, rate of macrophage apoptosis, production of reactive oxygen and/or nitrogen species, TNF or interleukin-10. Using an <it>in vitro </it>model designed to recapitulate cellular events implicated in mycobacterial infection and dissemination <it>in vivo </it>(i.e., phagocytosis of apoptotic macrophages containing mycobacteria), we demonstrated reduced recovery of viable mycobacteria within <it>Cd36<sup>-/- </sup></it>macrophages.</p> <p>Conclusions</p> <p>Together, these data indicate that CD36 deficiency confers resistance to mycobacterial infection. This observation is best explained by reduced intracellular survival of mycobacteria in the <it>Cd36<sup>-/- </sup></it>macrophage and a role for CD36 in the cellular events involved in granuloma formation that promote early bacterial expansion and dissemination.</p
    corecore