20 research outputs found

    Applying an Empirical Hydropathic Forcefield in Refinement May Improve Low-Resolution Protein X-Ray Crystal Structures

    Get PDF
    BACKGROUND: The quality of X-ray crystallographic models for biomacromolecules refined from data obtained at high-resolution is assured by the data itself. However, at low-resolution, >3.0 Å, additional information is supplied by a forcefield coupled with an associated refinement protocol. These resulting structures are often of lower quality and thus unsuitable for downstream activities like structure-based drug discovery. METHODOLOGY: An X-ray crystallography refinement protocol that enhances standard methodology by incorporating energy terms from the HINT (Hydropathic INTeractions) empirical forcefield is described. This protocol was tested by refining synthetic low-resolution structural data derived from 25 diverse high-resolution structures, and referencing the resulting models to these structures. The models were also evaluated with global structural quality metrics, e.g., Ramachandran score and MolProbity clashscore. Three additional structures, for which only low-resolution data are available, were also re-refined with this methodology. RESULTS: The enhanced refinement protocol is most beneficial for reflection data at resolutions of 3.0 Å or worse. At the low-resolution limit, ≥4.0 Å, the new protocol generated models with Cα positions that have RMSDs that are 0.18 Å more similar to the reference high-resolution structure, Ramachandran scores improved by 13%, and clashscores improved by 51%, all in comparison to models generated with the standard refinement protocol. The hydropathic forcefield terms are at least as effective as Coulombic electrostatic terms in maintaining polar interaction networks, and significantly more effective in maintaining hydrophobic networks, as synthetic resolution is decremented. Even at resolutions ≥4.0 Å, these latter networks are generally native-like, as measured with a hydropathic interactions scoring tool

    The use of biodiversity as source of new chemical entities against defined molecular targets for treatment of malaria, tuberculosis, and T-cell mediated diseases: a review

    Full text link

    Structure and mutational analysis of Rab GDP-dissociation inhibitor

    No full text
    The crystal structure of the bovine alpha-isoform of Rab GDP-dissociation inhibitor (GDI), which functions in vesicle-membrane transport to recycle and regulate Rab GTPases, has been determined to a resolution of 1.81 A. GDI is constructed of two main structural units, a large complex multisheet domain I and a smaller alpha-helical domain II. The structural organization of domain I is surprisingly closely related to FAD-containing monooxygenases and oxidases. Sequence-conserved regions common to GDI and the choroideraemia gene product, which delivers Rab to catalytic subunits of Rab geranylgeranyltransferase II, are clustered on one face of the molecule. The two most sequence-conserved regions, which form a compact structure at the apex of GDI, are shown by site-directed mutagenesis to play a critical role in the binding of Rab proteins
    corecore