395 research outputs found

    Quantum correlations of light due to a room temperature mechanical oscillator for force metrology

    Full text link
    The coupling of laser light to a mechanical oscillator via radiation pressure leads to the emergence of quantum mechanical correlations between the amplitude and phase quadrature of the laser beam. These correlations form a generic non-classical resource which can be employed for quantum-enhanced force metrology, and give rise to ponderomotive squeezing in the limit of strong correlations. To date, this resource has only been observed in a handful of cryogenic cavity optomechanical experiments. Here, we demonstrate the ability to efficiently resolve optomechanical quantum correlations imprinted on an optical laser field interacting with a room temperature nanomechanical oscillator. Direct measurement of the optical field in a detuned homodyne detector ("variational measurement") at frequencies far from the resonance frequency of the oscillator reveal quantum correlations at the few percent level. We demonstrate how the absolute visibility of these correlations can be used for a quantum-enhanced estimation of the quantum back-action force acting on the oscillator, and provides for an enhancement in the relative signal-to-noise ratio for the estimation of an off-resonant external force, even at room temperature

    Thermal intermodulation backaction in a high-cooperativity optomechanical system

    Full text link
    The pursuit of room temperature quantum optomechanics with tethered nanomechanical resonators faces stringent challenges owing to extraneous mechanical degrees of freedom. An important example is thermal intermodulation noise (TIN), a form of excess optical noise produced by mixing of thermal noise peaks. While TIN can be decoupled from the phase of the optical field, it remains indirectly coupled via radiation pressure, implying a hidden source of backaction that might overwhelm shot noise. Here we report observation of TIN backaction in a high-cooperativity, room temperature cavity optomechanical system consisting of an acoustic-frequency Si3_3N4_4 trampoline coupled to a Fabry-P\'{e}rot cavity. The backaction we observe exceeds thermal noise by 20 dB and radiation pressure shot noise by 40 dB, despite the thermal motion being 10 times smaller than the cavity linewidth. Our results suggest that mitigating TIN may be critical to reaching the quantum regime from room temperature in a variety of contemporary optomechanical systems.Comment: 8 pages, 5 figure

    Clamp-tapering increases the quality factor of stressed nanobeams

    Full text link
    Stressed nanomechanical resonators are known to have exceptionally high quality factors (QQ) due to the dilution of intrinsic dissipation by stress. Typically, the amount of dissipation dilution and thus the resonator QQ is limited by the high mode curvature region near the clamps. Here we study the effect of clamp geometry on the QQ of nanobeams made of high-stress Si3N4\mathrm{Si_3N_4}. We find that tapering the beam near the clamp - and locally increasing the stress - leads to increased QQ of MHz-frequency low order modes due to enhanced dissipation dilution. Contrary to recent studies of tethered-membrane resonators, we find that widening the clamps leads to decreased QQ despite increased stress in the beam bulk. The tapered-clamping approach has practical advantages compared to the recently developed "soft-clamping" technique. Tapered-clamping enhances the QQ of the fundamental mode and can be implemented without increasing the device size

    Towards cavity-free ground state cooling of an acoustic-frequency silicon nitride membrane

    Full text link
    We demonstrate feedback cooling of a millimeter-scale, 40 kHz SiN membrane from room temperature to 5 mK (3000 phonons) using a Michelson interferometer, and discuss the challenges to ground state cooling without an optical cavity. This advance appears within reach of current membrane technology, positioning it as a compelling alternative to levitated systems for quantum sensing and fundamental weak force measurements.Comment: To be published in the Applied Optics special issue: James C. Wyant College of Optical Science

    Searching for vector dark matter with an optomechanical accelerometer

    Full text link
    We consider using optomechanical accelerometers as resonant detectors for ultralight dark matter. As a concrete example, we describe a detector based on a silicon nitride membrane fixed to a beryllium mirror, forming an optical cavity. The use of different materials gives access to forces proportional to baryon (B) and lepton (L) charge, which are believed to be coupling channels for vector dark matter particles ("dark photons"). The cavity meanwhile provides access to quantum-limited displacement measurements. For a centimeter-scale membrane pre-cooled to 10 mK, we argue that sensitivity to vector B-L dark matter can exceed that of the E\"{o}t-Wash experiment in integration times of minutes, over a fractional bandwidth of ∼0.1%\sim 0.1\% near 10 kHz (corresponding to a particle mass of 10−1010^{-10}eV/c2^2). Our analysis can be translated to alternative systems such as levitated particles, and suggests the possibility of a new generation of table-top experiments

    Thermal intermodulation noise in cavity-based measurements

    Full text link
    Thermal frequency fluctuations in optical cavities limit the sensitivity of precision experiments ranging from gravitational wave observatories to optical atomic clocks. Conventional modeling of these noises assumes a linear response of the optical field to the fluctuations of cavity frequency. Fundamentally, however, this response is nonlinear. Here we show that nonlinearly transduced thermal fluctuations of cavity frequency can dominate the broadband noise in photodetection, even when the magnitude of fluctuations is much smaller than the cavity linewidth. We term this noise "thermal intermodulation noise" and show that for a resonant laser probe it manifests as intensity fluctuations. We report and characterize thermal intermodulation noise in an optomechanical cavity, where the frequency fluctuations are caused by mechanical Brownian motion, and find excellent agreement with our developed theoretical model. We demonstrate that the effect is particularly relevant to quantum optomechanics: using a phononic crystal Si3N4Si_3N_4 membrane with a low mass, soft-clamped mechanical mode we are able to operate in the regime where measurement quantum backaction contributes as much force noise as the thermal environment does. However, in the presence of intermodulation noise, quantum signatures of measurement are not revealed in direct photodetectors. The reported noise mechanism, while studied for an optomechanical system, can exist in any optical cavity

    Generalized dissipation dilution in strained mechanical resonators

    Full text link
    Mechanical resonators with high quality factors are of relevance in precision experiments, ranging from gravitational wave detection and force sensing to quantum optomechanics. Beams and membranes are well known to exhibit flexural modes with enhanced quality factors when subjected to tensile stress. The mechanism for this enhancement has been a subject of debate, but is typically attributed to elastic energy being "diluted" by a lossless potential. Here we clarify the origin of the lossless potential to be the combination of tension and geometric nonlinearity of strain. We present a general theory of dissipation dilution that is applicable to arbitrary resonator geometries and discuss why this effect is particularly strong for flexural modes of nanomechanical structures with high aspect ratios. Applying the theory to a non-uniform doubly clamped beam, we show analytically how dissipation dilution can be enhanced by modifying the beam shape to implement "soft clamping", thin clamping and geometric strain engineering, and derive the ultimate limit for dissipation dilution
    • …
    corecore