102 research outputs found

    SCHIP Children: How Long Do They Stay and Where Do They Go?

    Get PDF
    Presents findings on the length of children's enrollment in State Children's Health Insurance Programs and their coverage after they leave the program in seven states. Explores variations across states and how state policies may affect retention

    Shape of the concentration–response association between fine particulate matter pollution and human mortality in Beijing, China, and its implications for health impact assessment, The

    Get PDF
    Includes bibliographical references (pages 107009-12-107009-14).Publisher version: https://doi.org/10.1289/EHP4464.Background: Studies found approximately linear short-term associations between particulate matter (PM) and mortality in Western communities. However, in China, where the urban PM levels are typically considerably higher than in Western communities, some studies suggest nonlinearity in this association. Health impact assessments (HIA) of PM in China have generally not incorporated nonlinearity in the concentration–response (C-R) association, which could result in large discrepancies in estimates of excess deaths if the true association is nonlinear. Objectives: We investigated nonlinearity in the C-R associations between with PM with aerodynamic diameter ≤2.5μm (PM2.5) and mortality in Beijing, China, and the sensitivity of HIA to linearity assumptions. Methods: We modeled the C-R association between PM2.5 and cause-specific mortality in Beijing, China (2009–2012), using generalized linear models (GLM). PM2.5 was included through either linear, piecewise-linear, or spline functions to investigate evidence of nonlinearity. To determine the sensitivity of HIA to linearity assumptions, we estimated PM2.5-attributable deaths using both linear- and nonlinear-based C-R associations between PM2.5 and mortality. Results: We found some evidence that, for nonaccidental and circulatory mortality, the shape of the C-R association was relatively flat at lower concentrations of PM2.5, but then had a positive slope at higher concentrations, indicating nonlinearity. Conversely, the shape for respiratory mortality was positive and linear at lower concentrations of PM2.5, but then leveled off at the higher concentrations. Estimates of excess deaths attributable to short-term PM2.5 exposure were, in some cases, very sensitive to the linearity assumption in the association, but in other cases robust to this assumption. Conclusions: Our results demonstrate some evidence of nonlinearity in PM2.5–mortality associations and that an assumption of linearity in this association can influence HIAs, highlighting the importance of understanding potential nonlinearity in the PM2.5–mortality association at the high concentrations of PM2.5 in developing megacities like Beijing. https://doi.org/10.1289/EHP446

    Exposure to Household Air Pollution from Biomass Cookstoves and Levels of Fractional Exhaled Nitric Oxide (FeNO) among Honduran Women

    Get PDF
    Household air pollution is estimated to be responsible for nearly three million premature deaths annually. Measuring fractional exhaled nitric oxide (FeNO) may improve the limited understanding of the association of household air pollution and airway inflammation. We evaluated the cross-sectional association of FeNO with exposure to household air pollution (24-h average kitchen and personal fine particulate matter and black carbon; stove type) among 139 women in rural Honduras using traditional stoves or cleaner-burning Justastoves. We additionally evaluated interaction by age. Results were generally consistent with a null association; we did not observe a consistent pattern for interaction by age. Evidence from ambient and household air pollution regarding FeNO is inconsistent, and may be attributable to differing study populations, exposures, and FeNO measurement procedures (e.g., the flow rate used to measure FeNO)

    A hierarchical Bayesian model for estimating age-specific COVID-19 infection fatality rates in developing countries

    Full text link
    The COVID-19 infection fatality rate (IFR) is the proportion of individuals infected with SARS-CoV-2 who subsequently die. As COVID-19 disproportionately affects older individuals, age-specific IFR estimates are imperative to facilitate comparisons of the impact of COVID-19 between locations and prioritize distribution of scare resources. However, there lacks a coherent method to synthesize available data to create estimates of IFR and seroprevalence that vary continuously with age and adequately reflect uncertainties inherent in the underlying data. In this paper we introduce a novel Bayesian hierarchical model to estimate IFR as a continuous function of age that acknowledges heterogeneity in population age structure across locations and accounts for uncertainty in the estimates due to seroprevalence sampling variability and the imperfect serology test assays. Our approach simultaneously models test assay characteristic, serology, and death data, where the serology and death data are often available only for binned age groups. Information is shared across locations through hierarchical modeling to improve estimation of the parameters with limited data. Modeling data from 26 developing country locations during the first year of the COVID-19 pandemic, we found seroprevalence did not change dramatically with age, and the IFR at age 60 was above the high-income country benchmark for most locations

    Magnesium biofortification of Italian ryegrass (Lolium multiflorum L.) via agronomy and breeding as a potential way to reduce grass tetany in grazing ruminants

    Get PDF
    © 2019, The Author(s). Aim: Magnesium (Mg) deficiency (known as grass tetany) is a serious metabolic disorder that affects grazing ruminants. We tested whether Mg-fertiliser can increase Mg concentration of Italian ryegrasses (Lolium multiflorum L.) including a cultivar (cv. Bb2067; ‘Magnet’), bred to accumulate larger concentrations of Mg. Methods: Under controlled environment (CE) conditions, three cultivars (cv. Bb2067, cv. Bb2068, cv. RvP) were grown in low-nutrient compost at six fertiliser rates (0–1500μM MgCl2.6H2O). Under field conditions, the three cultivars in the CE condition and cv. Alamo were grown at two sites, and four rates of MgSO4 fertiliser application rates (0–200kgha−1 MgO). Multiple grass cuts were taken over two-years. Results: Grass Mg concentration increased with increasing Mg-fertiliser application rates in all cultivars and conditions. Under field conditions, cv. Bb2067 had 11–73% greater grass Mg concentration and smaller forage tetany index (FTI) than other cultivars across the Mg-fertiliser application rates, sites and cuts. Grass dry matter (DM) yield of cv. Bb2067 was significantly (p < 0.05) smaller than cv. Alamo. The effect of Mg-fertiliser rate on DM yield was not significant (p ≥ 0.05). Conclusions: Biofortification of grass with Mg through breeding and agronomy can improve the forage Mg concentration for grazing ruminants, even in high-growth spring grass conditions when hypomagnesaemia is most prevalent. Response to agronomic biofortification varied with cultivar, Mg-fertiliser rate, site and weather. The cost:benefit of these approaches and farmer acceptability, and the impact on cattle and sheep grazing on grasses biofortified with Mg requires further investigation
    • …
    corecore