158 research outputs found
Cellular uptake of steroid carrier proteins - mechanisms and implications
Steroid hormones are believed to enter cells solely by free diffusion through the plasma membrane. However, recent studies suggest the existence of cellular uptake pathways for carrier-bound steroids. Similar to the clearance of cholesterol via lipoproteins, these pathways involve the recognition of carrier proteins by endocytic receptors on the surface of target cells, followed by internalization and cellular delivery of the bound sterols. Here, we discuss the emerging concept that steroid hormones can selectively enter steroidogenic tissues by receptor-mediated endocytosis; and we discuss the implications of these uptake pathways for steroid hormone metabolism and action in vivo
Excitatory amino acid transporters in physiology and disorders of the central nervous system
Excitatory amino acid transporters (EAATs) encompass a class of five transporters with distinct expression in neurons and glia of the central nervous system (CNS). EAATs are mainly recognized for their role in uptake of the amino acid glutamate, the major excitatory neurotransmitter. EAATs-mediated clearance of glutamate released by neurons is vital to maintain proper glutamatergic signalling and to prevent toxic accumulation of this amino acid in the extracellular space. In addition, some EAATs also act as chloride channels or mediate the uptake of cysteine, required to produce the reactive oxygen speciesscavenger glutathione. Given their central role in glutamate homeostasis in the brain, as well as their additional activities, it comes as no surprise that EAAT dysfunctions have been implicated in numerous acute or chronic diseases of the CNS, including ischemic stroke and epilepsy, cerebellar ataxias, amyotrophic lateral sclerosis, Alzheimer´s disease and Huntington´s disease. Here we review the studies in cellular and animal models, as well as in humans that highlight the roles of EAATs in the pathogenesis of these devastating disorders. We also discuss the mechanisms regulating EAATs expression and intracellular trafficking and new exciting possibilities to modulate EAATs and to provide neuroprotection in course of pathologies affecting the CNS
Protein sorting gone wrong - VPS10P domain receptors in cardiovascular and metabolic diseases
VPS10P domain receptors are a unique class of sorting receptors that direct intracellular transport of target proteins in neurons and that play central roles in neurodegenerative processes. Surprisingly, genome-wide association studies now implicate the very same receptors in cardiovascular and metabolic disturbances. In this review, we discuss current findings that uncovered some of the molecular mechanisms whereby sorting receptors, such as SORLA, sortilin, and SORCS1 control homeostasis in cardiovascular and metabolic tissues, and how they promote hypercholesterolemia, atherosclerosis, obesity, and diabetes, when being altered
Sorting receptor SORLA: cellular mechanisms and implications for disease
Sorting-related receptor with A-type repeats (SORLA) is an intracellular sorting receptor that directs cargo proteins, such as kinases, phosphatases, and signaling receptors, to their correct location within the cell. The activity of SORLA assures proper function of cells and tissues, and receptor dysfunction is the underlying cause of common human malignancies, including Alzheimer's disease, atherosclerosis, and obesity. Here, we discuss the molecular mechanisms that govern sorting of SORLA and its cargo in multiple cell types, and why genetic defects in this receptor results in devastating diseases
Risk factor SORL1: from genetic association to functional validation in Alzheimer's disease
Alzheimer's disease (AD) represents one of the most dramatic threats to healthy aging and devising effective treatments for this devastating condition remains a major challenge in biomedical research. Much has been learned about the molecular concepts that govern proteolytic processing of the amyloid precursor protein to amyloid-{beta} peptides (A{beta}), and how accelerated accumulation of neurotoxic A{beta} peptides underlies neuronal cell death in rare familial but also common sporadic forms of this disease. Out of a plethora of proposed modulators of amyloidogenic processing, one protein emerged as a key factor in AD pathology, a neuronal sorting receptor termed SORLA. Independent approaches using human genetics, clinical pathology, or exploratory studies in animal models all converge on this receptor that is now considered a central player in AD-related processes by many. This review will provide a comprehensive overview of the evidence implicating SORLA-mediated protein sorting in neurodegenerative processes, and how receptor gene variants in the human population impair functional receptor expression in sporadic but possibly also in autosomal-dominant forms of AD
Single-cell transcriptomics characterizes cell types in the subventricular zone and uncovers molecular defects impairing adult neurogenesis
Neural stem cells (NSCs) contribute to plasticity and repair of the adult brain. Niches harboring NSCs regulate stem cell self-renewal and differentiation. We used comprehensive and untargeted single-cell RNA profiling to generate a molecular cell atlas of the largest germinal region of the adult mouse brain, the subventricular zone (SVZ). We characterized >20 neural and non-neural cell types and gained insights into the dynamics of neurogenesis by predicting future cell states based on computational analysis of RNA kinetics. Furthermore, we applied our single-cell approach to document decreased numbers of NSCs, reduced proliferation activity of progenitors, and perturbations in Wnt and BMP signaling pathways in mice lacking LRP2, an endocytic receptor required for SVZ maintenance. Our data provide a valuable resource to study adult neurogenesis and a proof of principle for the power of single-cell RNA sequencing to elucidate neural cell-type-specific alterations in loss-of-function models
Remnant lipoproteins inhibit malaria sporozoite invasion of hepatocytes
Remnants of lipoproteins, intestinal chylomicrons, and very low density lipoprotein (VLDL), are rapidly cleared from plasma and enter hepatocytes. It has been suggested that remnant lipoproteins are initially captured in the space of Disse by heparan sulfate proteoglycans (HSPGs), and that their subsequent internalization into hepatocytes is mediated by members of the LDL-receptor gene family. Similarly to lipoprotein remnants, malaria sporozoites are removed from the blood circulation by the liver within minutes after injection by Anopheles mosquitoes. The sporozoite's surface is covered by the circumsporozoite protein (CS), and its region II-plus has been implicated in the binding of the parasites to glycosaminoglycan chains of hepatocyte HSPGs. Lactoferrin, a protein with antibacterial properties found in breast milk and neutrophil granules, is also rapidly cleared from the circulation by hepatocytes, and can inhibit the hepatic uptake of lipoprotein remnants. Here we provide evidence that sporozoites, lactoferrin, and remnant lipoproteins are cleared from the blood by similar mechanisms. CS, lactoferrin, and remnant lipoproteins compete in vitro and in vivo for binding sites on liver cells. The relevance of this binding event for sporozoite infectivity is highlighted by our demonstration that apoliprotein E-enriched beta-VLDI and lactoferrin inhibit sporozoite invasion of HepG2 cells. In addition, malaria sporozoites are less infective in LDL-receptor knockout (LDLR -/-) mice maintained on a high fat diet, as compared with littermates maintained on a normal diet. We conclude that the clearance of lipoprotein remnants and sporozoites from the blood is mediated by the same set of highly sulfated HSPGs on the hepatocyte plasma membrane
LRP2 mediates folate uptake in the developing neural tube
The low-density lipoprotein (LDL) receptor-related protein 2 (LRP2) is a multifunctional cell surface receptor expressed in the embryonic neuroepithelium. Loss of LRP2 in the developing murine central nervous system (CNS) causes impaired closure of the rostral neural tube at embryonic stage (E) 9.0. Similar neural tube defects (NTDs) have previously been attributed to impaired folate metabolism in mice. We therefore asked whether LRP2 might be required for delivery of folate to neuroepithelial cells during neurulation. Uptake assays in whole embryo cultures showed that LRP2 deficient neuroepithelial cells are unable to mediate uptake of folate bound to soluble folate receptor 1 (sFOLR1). Consequently, folate concentrations are significantly reduced in Lrp2(-/-) embryos compared to control littermates. Moreover, the folic acid dependent gene Alx3 is significantly down regulated in Lrp2 mutants. In conclusion, we show that LRP2 is essential for cellular folate uptake in the developing neural tube, a crucial step for proper neural tube closure
SORLA-mediated trafficking of TrkB enhances the response of neurons to BDNF
Stimulation of neurons with brain-derived neurotrophic factor (BDNF) results in robust induction of SORLA, an intracellular sorting receptor of the VPS10P domain receptor gene family. However, the relevance of SORLA for BDNF-induced neuronal responses has not previously been investigated. We now demonstrate that SORLA is a sorting factor for the tropomyosin-related kinase receptor B (TrkB) that facilitates trafficking of this BDNF receptor between synaptic plasma membranes, post-synaptic densities, and cell soma, a step critical for neuronal signal transduction. Loss of SORLA expression results in impaired neuritic transport of TrkB and in blunted response to BDNF in primary neurons; and it aggravates neuromotoric deficits caused by low BDNF activity in a mouse model of Huntington's disease. Thus, our studies revealed a key role for SORLA in mediating BDNF trophic signaling by regulating the intracellular location of TrkB
LRP2 controls sonic hedgehog-dependent differentiation of cardiac progenitor cells during outflow tract formation
Conotruncal malformations are a major cause of congenital heart defects in newborn infants. Recently, genetic screens in humans and in mouse models have identified mutations in LRP2, a multi-ligand receptor, as a novel cause of a common arterial trunk, a severe form of outflow tract (OFT) defect. Yet, the underlying mechanism why the morphogen receptor LRP2 is essential for OFT development remained unexplained. Studying LRP2-deficient mouse models, we now show that LRP2 is expressed in the cardiac progenitor niche of the anterior second heart field (SHF) that contributes to elongation of the OFT during separation into aorta and pulmonary trunk. Loss of LRP2 in mutant mice results in depletion of a pool of sonic hedgehog-dependent progenitor cells in the anterior SHF due to premature differentiation into cardiomyocytes as they migrate into the OFT myocardium. Depletion of this cardiac progenitor cell pool results in aberrant shortening of the OFT, the likely cause of CAT formation in affected mice. Our findings identified the molecular mechanism whereby LRP2 controls maintenance of progenitor cell fate in the anterior SHF essential for OFT separation, and why receptor dysfunction is a novel cause of conotruncal malformation
- …