5,427 research outputs found
A climatically-derived global soil moisture data set for use in the GLAS atmospheric circulation model seasonal cycle experiment
Algorithms for point interpolation and contouring on the surface of the sphere and in Cartesian two-space are developed from Shepard's (1968) well-known, local search method. These mapping procedures then are used to investigate the errors which appear on small-scale climate maps as a result of the all-too-common practice of of interpolating, from irregularly spaced data points to the nodes of a regular lattice, and contouring Cartesian two-space. Using mean annual air temperatures field over the western half of the northern hemisphere is estimated both on the sphere, assumed to be correct, and in Cartesian two-space. When the spherically- and Cartesian-approximted air temperature fields are mapped and compared, the magnitudes (as large as 5 C to 10 C) and distribution of the errors associated with the latter approach become apparent
On the design of an interactive biosphere for the GLAS general circulation model
Improving the realism and accuracy of the GLAS general circulation model (by adding an interactive biosphere that will simulate the transfers of latent and sensible heat from land surface to atmosphere as functions of the atmospheric conditions and the morphology and physiology of the vegetation) is proposed
Block height influences the head depth of competitive racing starts
The purpose of this study was to determine whether or not starting block height has an effect on the head depth and head speed of competitive racing starts. Eleven experienced, collegiate swimmers executed competitive racing starts from three different starting heights: 0.21 m (pool deck), 0.46 m (intermediate block), and 0.76 m (standard block). One-way repeated measures ANOVA indicated that starting height had a significant effect on the maximum depth of the center of the head, head speed at maximum head depth, and distance from starting wall at maximum head depth. Racing starts from the standard block and pool deck were significantly deeper, faster, and farther at maximum head depth than starts from the intermediate block. There were no differences between depth, speed, or distance between the standard block and pool deck. We conclude that there is not a positive linear
relationship between starting depth and starting height, which means that starts do not necessarily get deeper as the starting height increases
Competitive swimmers modify racing start depth upon request
To expand upon recent findings showing that competitive swimmers complete significantly shallower racing starts in shallower pools, 12 more experienced and 13 less experienced swimmers were filmed underwater during completion of competitive starts. Two starts (1 routine and 1 “requested shallow”) were executed from a 0.76 m block height into water 3.66 m deep. Dependent measures were
maximum head depth, head speed at maximum head depth, and distance from the starting wall at maximum head depth. Statistical analyses yielded significant main effects (p < 0.05) for both start type and swimmer experience. Starts executed by the more experienced swimmers were deeper and faster than those executed by the less experienced swimmers. When asked to dive shallowly, maximum head depth
decreased (0.19 m) and head speed increased (0.33 ms-1) regardless of experience. The ability of all swimmers to modify start depth implies that spinal cord injuries
during competitive swimming starts are not necessarily due to an inherent inability to control the depth of the start
Racing start safety: head depth and head speed during competitive starts into a water depth of 1.22 m
From the perspective of swimmer safety, there have been no quantitative 3-dimensional
studies of the underwater phase of racing starts during competition. To do
so, 471 starts were filmed during a meet with a starting depth of 1.22 m and block
height of 0.76 m. Starts were stratified according to age (8 & U, 9–10, 11–12,
13–14, and 15 & O) and stroke during the first lap (freestyle, breaststroke, and
butterfly). Dependent measures were maximum head depth, head speed at maximum
head depth, and distance from the wall at maximum head depth. For all
three variables, there were significant main effects for age, F(4, 456) = 12.53, p
< .001, F(4, 456) = 27.46, p < .001, and F(4, 456) = 54.71, p < .001, respectively,
and stroke, F(2, 456) = 16.91, p < .001, F(2, 456) = 8.45, p < .001, and F(2, 456)
= 18.15, p < .001, respectively. The older swimmers performed starts that were
deeper and faster than the younger swimmers and as a result, the older swimmers
may be at a greater risk for injury when performing starts in this pool depth
Start depth modification by adolescent competitive swimmers
To expand upon previous studies showing inexperienced high school swimmers can complete significantly shallower racing starts when asked to start “shallow,” 42 age group swimmers (6-14 years old) were filmed underwater during completion of competitive starts. Two starts (one normal and one “requested shallow”) were executed from a 0.76 m block into 1.83 m of water. Dependent measures were maximum depth of the center of the head, head speed at maximum head depth, and distance from the starting wall at maximum head depth. Statistical analyses yielded significant main effects (p < 0.05) for start type and age. The oldest swimmers’ starts were deeper and faster than the youngest swimmers’ starts. When asked to start shallowly, maximum head depth decreased (0.10 m) and head speed increased (0.32 ms-1) regardless of age group. The ability of all age groups to modify start depth implies that spinal cord injuries during competitive swimming starts are not necessarily due to age-related deficits in basic motor skills
Water depth influences the head depth of competitive racing starts
Recent research suggests that swimmers perform deeper starts in deeper water (Blitvich, McElroy, Blanksby, Clothier, & Pearson, 2000; Cornett, White, Wright, Willmott, & Stager, 2011). To provide additional information relevant to the depth adjustments swimmers make as a function of water depth and the validity of values reported in prior literature, 11 collegiate swimmers were asked to execute racing starts in three water depths (1.53 m, 2.14 m, and 3.66 m). One-way repeated measures ANOVA revealed that the maximum depth of the center of the head was significantly deeper in 3.66 m as compared to the shallower water depths. No differences due to water depth were detected in head speed at maximum head depth or in the distance from the wall at which maximum head depth occurred. We concluded that swimmers can and do make head depth adjustments as a function of water depth. Earlier research performed in deep water may provide overestimates of maximum head depth following the execution of a racing start in water depth typical of competitive venues
Racing start safety: head depth and head speed during competitive swim starts into a water depth of 2.29m
The head depths and head speeds of swimmers attained following the execution of racing starts during competition have not been well described. To address this, 211 competitive starts were filmed into a starting depth of 2.29 m with a block height of 0.76 m. Starts were stratified according to age, sex, stroke, and swim meet. Dependent measures were maximum depth of the center of the head, head speed at maximum head depth, and distance from the wall at maximum head depth. Significant main effects existed for age for all three measures: F(1, 106) = 13.33, p
< .001, F(1, 106) = 18.60, p < .001 and F(1, 106) = 70.59, p < .001, respectively. There was a significant age by sex interaction, F(1, 106) = 5.36, p = 0.023, for head speed. In conclusion, older swimmers performed starts that were deeper and faster than younger swimmers and nearly all starts exceeded the threshold speeds for injury. As compared to starts previously reported into 1.22 m, starts
were deeper, slower, and farther from the starting wall at maximum head depth
- …