231 research outputs found
Hamiltonians for curves
We examine the equilibrium conditions of a curve in space when a local energy
penalty is associated with its extrinsic geometrical state characterized by its
curvature and torsion. To do this we tailor the theory of deformations to the
Frenet-Serret frame of the curve. The Euler-Lagrange equations describing
equilibrium are obtained; Noether's theorem is exploited to identify the
constants of integration of these equations as the Casimirs of the euclidean
group in three dimensions. While this system appears not to be integrable in
general, it {\it is} in various limits of interest. Let the energy density be
given as some function of the curvature and torsion, . If
is a linear function of either of its arguments but otherwise arbitrary, we
claim that the first integral associated with rotational invariance permits the
torsion to be expressed as the solution of an algebraic equation in
terms of the bending curvature, . The first integral associated with
translational invariance can then be cast as a quadrature for or for
.Comment: 17 page
Smooth Random Surfaces from Tight Immersions?
We investigate actions for dynamically triangulated random surfaces that
consist of a gaussian or area term plus the {\it modulus} of the gaussian
curvature and compare their behavior with both gaussian plus extrinsic
curvature and ``Steiner'' actions.Comment: 7 page
Conformally invariant bending energy for hypersurfaces
The most general conformally invariant bending energy of a closed
four-dimensional surface, polynomial in the extrinsic curvature and its
derivatives, is constructed. This invariance manifests itself as a set of
constraints on the corresponding stress tensor. If the topology is fixed, there
are three independent polynomial invariants: two of these are the
straighforward quartic analogues of the quadratic Willmore energy for a
two-dimensional surface; one is intrinsic (the Weyl invariant), the other
extrinsic; the third invariant involves a sum of a quadratic in gradients of
the extrinsic curvature -- which is not itself invariant -- and a quartic in
the curvature. The four-dimensional energy quadratic in extrinsic curvature
plays a central role in this construction.Comment: 16 page
Membrane geometry with auxiliary variables and quadratic constraints
Consider a surface described by a Hamiltonian which depends only on the
metric and extrinsic curvature induced on the surface. The metric and the
curvature, along with the basis vectors which connect them to the embedding
functions defining the surface, are introduced as auxiliary variables by adding
appropriate constraints, all of them quadratic. The response of the Hamiltonian
to a deformation in each of the variables is examined and the relationship
between the multipliers implementing the constraints and the conserved stress
tensor of the theory established.Comment: 8 page
The Conformal Willmore Functional: a Perturbative Approach
The conformal Willmore functional (which is conformal invariant in general
Riemannian manifold ) is studied with a perturbative method: the
Lyapunov-Schmidt reduction. Existence of critical points is shown in ambient
manifolds -where is a metric close
and asymptotic to the euclidean one. With the same technique a non existence
result is proved in general Riemannian manifolds of dimension three.Comment: 34 pages; Journal of Geometric Analysis, on line first 23 September
201
Surfaces immersed in Lie algebras associated with elliptic integrals
The main aim of this paper is to study soliton surfaces immersed in Lie
algebras associated with ordinary differential equations (ODE's) for elliptic
functions. That is, given a linear spectral problem for such an ODE in matrix
Lax representation, we search for the most general solution of the wave
function which satisfies the linear spectral problem. These solutions allow for
the explicit construction of soliton surfaces by the Fokas-Gel'fand formula for
immersion, as formulated in (Grundland and Post 2011) which is based on the
formalism of generalized vector fields and their prolongation structures. The
problem has been reduced to examining three types of symmetries, namely, a
conformal symmetry in the spectral parameter (known as the Sym-Tafel formula),
gauge transformations of the wave function and generalized symmetries of the
associated integrable ODE. The paper contains a detailed explanation of the
immersion theory of surfaces in Lie algebras in connection with ODE's as well
as an exposition of the main tools used to study their geometric
characteristics. Several examples of the Jacobian and P-Weierstrass elliptic
functions are included as illustrations of the theoretical results.Comment: 22 pages, 3 sets of figures. Keywords: Generalized symmetries,
integrable models, surfaces immersed in Lie algebra
Quantum deformations of associative algebras and integrable systems
Quantum deformations of the structure constants for a class of associative
noncommutative algebras are studied. It is shown that these deformations are
governed by the quantum central systems which has a geometrical meaning of
vanishing Riemann curvature tensor for Christoffel symbols identified with the
structure constants. A subclass of isoassociative quantum deformations is
described by the oriented associativity equation and, in particular, by the
WDVV equation. It is demonstrated that a wider class of weakly (non)associative
quantum deformations is connected with the integrable soliton equations too. In
particular, such deformations for the three-dimensional and
infinite-dimensional algebras are described by the Boussinesq equation and KP
hierarchy, respectively.Comment: Numeration of the formulas is correcte
Conformally parametrized surfaces associated with CP^(N-1) sigma models
Two-dimensional conformally parametrized surfaces immersed in the su(N)
algebra are investigated. The focus is on surfaces parametrized by solutions of
the equations for the CP^(N-1) sigma model. The Lie-point symmetries of the
CP^(N-1) model are computed for arbitrary N. The Weierstrass formula for
immersion is determined and an explicit formula for a moving frame on a surface
is constructed. This allows us to determine the structural equations and
geometrical properties of surfaces in R^(N^2-1). The fundamental forms,
Gaussian and mean curvatures, Willmore functional and topological charge of
surfaces are given explicitly in terms of any holomorphic solution of the CP^2
model. The approach is illustrated through several examples, including surfaces
immersed in low-dimensional su(N) algebras.Comment: 32 page
Surfaces immersed in su(N+1) Lie algebras obtained from the CP^N sigma models
We study some geometrical aspects of two dimensional orientable surfaces
arrising from the study of CP^N sigma models. To this aim we employ an
identification of R^(N(N+2)) with the Lie algebra su(N+1) by means of which we
construct a generalized Weierstrass formula for immersion of such surfaces. The
structural elements of the surface like its moving frame, the Gauss-Weingarten
and the Gauss-Codazzi-Ricci equations are expressed in terms of the solution of
the CP^N model defining it. Further, the first and second fundamental forms,
the Gaussian curvature, the mean curvature vector, the Willmore functional and
the topological charge of surfaces are expressed in terms of this solution. We
present detailed implementation of these results for surfaces immersed in su(2)
and su(3) Lie algebras.Comment: 32 pages, 1 figure; changes: major revision of presentation,
clarifications adde
Index-free Heat Kernel Coefficients
Using index-free notation, we present the diagonal values of the first five
heat kernel coefficients associated with a general Laplace-type operator on a
compact Riemannian space without boundary. The fifth coefficient appears here
for the first time. For a flat space with a gauge connection, the sixth
coefficient is given too. Also provided are the leading terms for any
coefficient, both in ascending and descending powers of the Yang-Mills and
Riemann curvatures, to the same order as required for the fourth coefficient.
These results are obtained by directly solving the relevant recursion
relations, working in Fock-Schwinger gauge and Riemann normal coordinates. Our
procedure is thus noncovariant, but we show that for any coefficient the
`gauged' respectively `curved' version is found from the corresponding
`non-gauged' respectively `flat' coefficient by making some simple covariant
substitutions. These substitutions being understood, the coefficients retain
their `flat' form and size. In this sense the fifth and sixth coefficient have
only 26 and 75 terms respectively, allowing us to write them down. Using
index-free notation also clarifies the general structure of the heat kernel
coefficients. In particular, in flat space we find that from the fifth
coefficient onward, certain scalars are absent. This may be relevant for the
anomalies of quantum field theories in ten or more dimensions.Comment: 38 pages, LaTe
- …