688 research outputs found

    Force dipoles and stable local defects on fluid vesicles

    Full text link
    An exact description is provided of an almost spherical fluid vesicle with a fixed area and a fixed enclosed volume locally deformed by external normal forces bringing two nearby points on the surface together symmetrically. The conformal invariance of the two-dimensional bending energy is used to identify the distribution of energy as well as the stress established in the vesicle. While these states are local minima of the energy, this energy is degenerate; there is a zero mode in the energy fluctuation spectrum, associated with area and volume preserving conformal transformations, which breaks the symmetry between the two points. The volume constraint fixes the distance SS, measured along the surface, between the two points; if it is relaxed, a second zero mode appears, reflecting the independence of the energy on SS; in the absence of this constraint a pathway opens for the membrane to slip out of the defect. Logarithmic curvature singularities in the surface geometry at the points of contact signal the presence of external forces. The magnitude of these forces varies inversely with SS and so diverges as the points merge; the corresponding torques vanish in these defects. The geometry behaves near each of the singularities as a biharmonic monopole, in the region between them as a surface of constant mean curvature, and in distant regions as a biharmonic quadrupole. Comparison of the distribution of stress with the quadratic approximation in the height functions points to shortcomings of the latter representation. Radial tension is accompanied by lateral compression, both near the singularities and far away, with a crossover from tension to compression occurring in the region between them.Comment: 26 pages, 10 figure

    Modelling cell motility and chemotaxis with evolving surface finite elements

    Get PDF
    We present a mathematical and a computational framework for the modelling of cell motility. The cell membrane is represented by an evolving surface, with the movement of the cell determined by the interaction of various forces that act normal to the surface. We consider external forces such as those that may arise owing to inhomogeneities in the medium and a pressure that constrains the enclosed volume, as well as internal forces that arise from the reaction of the cells' surface to stretching and bending. We also consider a protrusive force associated with a reaction-diffusion system (RDS) posed on the cell membrane, with cell polarization modelled by this surface RDS. The computational method is based on an evolving surface finite-element method. The general method can account for the large deformations that arise in cell motility and allows the simulation of cell migration in three dimensions. We illustrate applications of the proposed modelling framework and numerical method by reporting on numerical simulations of a model for eukaryotic chemotaxis and a model for the persistent movement of keratocytes in two and three space dimensions. Movies of the simulated cells can be obtained from http://homepages.warwick.ac.uk/maskae/CV_Warwick/Chemotaxis.html

    On a new conformal functional for simplicial surfaces

    Full text link
    We introduce a smooth quadratic conformal functional and its weighted version W2=eβ2(e)W2,w=e(ni+nj)β2(e),W_2=\sum_e \beta^2(e)\quad W_{2,w}=\sum_e (n_i+n_j)\beta^2(e), where β(e)\beta(e) is the extrinsic intersection angle of the circumcircles of the triangles of the mesh sharing the edge e=(ij)e=(ij) and nin_i is the valence of vertex ii. Besides minimizing the squared local conformal discrete Willmore energy WW this functional also minimizes local differences of the angles β\beta. We investigate the minimizers of this functionals for simplicial spheres and simplicial surfaces of nontrivial topology. Several remarkable facts are observed. In particular for most of randomly generated simplicial polyhedra the minimizers of W2W_2 and W2,wW_{2,w} are inscribed polyhedra. We demonstrate also some applications in geometry processing, for example, a conformal deformation of surfaces to the round sphere. A partial theoretical explanation through quadratic optimization theory of some observed phenomena is presented.Comment: 14 pages, 8 figures, to appear in the proceedings of "Curves and Surfaces, 8th International Conference", June 201

    Holonomy groups and W-symmetries

    Full text link
    Irreducible sigma models, i.e. those for which the partition function does not factorise, are defined on Riemannian spaces with irreducible holonomy groups. These special geometries are characterised by the existence of covariantly constant forms which in turn give rise to symmetries of the supersymmetric sigma model actions. The Poisson bracket algebra of the corresponding currents is a W-algebra. Extended supersymmetries arise as special cases.Comment: pages 2

    X-ray time variability across the atoll source states of 4U 1636--53

    Full text link
    We have studied the rapid X-ray time variability in 149 pointed observations with the \textit{Rossi X-ray Timing Explorer} (RXTE)'s Proportional Counter Array of the atoll source 4U~1636--53 in the banana state and, for the first time with RXTE, in the island state. We compare the frequencies of the variability components of 4U~1636--53 with those in other atoll and Z-sources and find that 4U~1636--53 follows the universal scheme of correlations previously found for other atoll sources at (sometimes much) lower luminosities. Our results on the hectohertz QPO suggest that the mechanism that sets its frequency differs from that for the other components, while the amplitude setting mechanism is common. A previously proposed interpretation of the narrow low-frequency QPO frequencies in different sources in terms of harmonic mode switching is not supported by our data, nor by some previous data on other sources and the frequency range that this QPO covers is found not to be related to spin, angular momentum or luminosity.Comment: 16 pages, 13 figures, accepted for publication in Ap

    Spinor representation of surfaces and complex stresses on membranes and interfaces

    Full text link
    Variational principles are developed within the framework of a spinor representation of the surface geometry to examine the equilibrium properties of a membrane or interface. This is a far-reaching generalization of the Weierstrass-Enneper representation for minimal surfaces, introduced by mathematicians in the nineties, permitting the relaxation of the vanishing mean curvature constraint. In this representation the surface geometry is described by a spinor field, satisfying a two-dimensional Dirac equation, coupled through a potential associated with the mean curvature. As an application, the mesoscopic model for a fluid membrane as a surface described by the Canham-Helfrich energy quadratic in the mean curvature is examined. An explicit construction is provided of the conserved complex-valued stress tensor characterizing this surface.Comment: 17 page

    On Density of State of Quantized Willmore Surface-A Way to Quantized Extrinsic String in R^3

    Full text link
    Recently I quantized an elastica with Bernoulli-Euler functional in two-dimensional space using the modified KdV hierarchy. In this article, I will quantize a Willmore surface, or equivalently a surface with the Polyakov extrinsic curvature action, using the modified Novikov-Veselov (MNV) equation. In other words, I show that the density of state of the partition function for the quantized Willmore surface is expressed by volume of a subspace of the moduli of the MNV equation.Comment: AMS-Tex Us

    Bogomol'nyi Decomposition for Vesicles of Arbitrary Genus

    Full text link
    We apply the Bogomol'nyi technique, which is usually invoked in the study of solitons or models with topological invariants, to the case of elastic energy of vesicles. We show that spontaneous bending contribution caused by any deformation from metastable bending shapes falls in two distinct topological sets: shapes of spherical topology and shapes of non-spherical topology experience respectively a deviatoric bending contribution a la Fischer and a mean curvature bending contribution a la Helfrich. In other words, topology may be considered to describe bending phenomena. Besides, we calculate the bending energy per genus and the bending closure energy regardless of the shape of the vesicle. As an illustration we briefly consider geometrical frustration phenomena experienced by magnetically coated vesicles.Comment: 8 pages, 1 figure; LaTeX2e + IOPar

    Hamiltonians for curves

    Full text link
    We examine the equilibrium conditions of a curve in space when a local energy penalty is associated with its extrinsic geometrical state characterized by its curvature and torsion. To do this we tailor the theory of deformations to the Frenet-Serret frame of the curve. The Euler-Lagrange equations describing equilibrium are obtained; Noether's theorem is exploited to identify the constants of integration of these equations as the Casimirs of the euclidean group in three dimensions. While this system appears not to be integrable in general, it {\it is} in various limits of interest. Let the energy density be given as some function of the curvature and torsion, f(κ,τ)f(\kappa,\tau). If ff is a linear function of either of its arguments but otherwise arbitrary, we claim that the first integral associated with rotational invariance permits the torsion τ\tau to be expressed as the solution of an algebraic equation in terms of the bending curvature, κ\kappa. The first integral associated with translational invariance can then be cast as a quadrature for κ\kappa or for τ\tau.Comment: 17 page

    Surfaces immersed in Lie algebras associated with elliptic integrals

    Full text link
    The main aim of this paper is to study soliton surfaces immersed in Lie algebras associated with ordinary differential equations (ODE's) for elliptic functions. That is, given a linear spectral problem for such an ODE in matrix Lax representation, we search for the most general solution of the wave function which satisfies the linear spectral problem. These solutions allow for the explicit construction of soliton surfaces by the Fokas-Gel'fand formula for immersion, as formulated in (Grundland and Post 2011) which is based on the formalism of generalized vector fields and their prolongation structures. The problem has been reduced to examining three types of symmetries, namely, a conformal symmetry in the spectral parameter (known as the Sym-Tafel formula), gauge transformations of the wave function and generalized symmetries of the associated integrable ODE. The paper contains a detailed explanation of the immersion theory of surfaces in Lie algebras in connection with ODE's as well as an exposition of the main tools used to study their geometric characteristics. Several examples of the Jacobian and P-Weierstrass elliptic functions are included as illustrations of the theoretical results.Comment: 22 pages, 3 sets of figures. Keywords: Generalized symmetries, integrable models, surfaces immersed in Lie algebra
    corecore