186 research outputs found
Die rechts Handhabung von Gesetz und Evangelium die wichtigate Theologenkunst
Die rechts Handhabung von Gesetz und Evangelium die wichtigate Theologenkunst (The right application of Law and Gospel is the important art of theology
Recommended from our members
Enhancing H2 evolution performance of an immobilised cobalt catalyst by rational ligand design.
The catalyst [CoIIIBr((DO)(DOH)(4-BnPO3H2)(2-CH2py)pn)]Br, CoP3 , has been synthesised to improve the stability and activity of cobalt catalysts immobilised on metal oxide surfaces. The CoP3 catalyst contains an equatorial diimine-dioxime ligand, (DOH)2pn = N2,N2'-propanediyl-bis(2,3-butanedione-2-imine-3-oxime), with a benzylphosphonic acid (4-BnPO3H2) group and a methylpyridine (2-CH2py) ligand covalently linked to the bridgehead of the pseudo-macrocyclic diimine-dioxime ligand. The phosphonic acid functionality provides a robust anchoring group for immobilisation on metal oxides, whereas the pyridine is coordinated to the Co ion to enhance the catalytic activity of the catalyst. Electrochemical investigations in solution confirm that CoP3 shows electrocatalytic activity for the reduction of aqueous protons between pH 3 and 7. The metal oxide anchor provides the catalyst with a high affinity for mesostructured Sn-doped In2O3 electrodes (mesoITO; loading of approximately 22 nmol cm-2) and the electrostability of the attached CoP3 was confirmed by cyclic voltammetry. Finally, immobilisation of the catalyst on ruthenium-dye sensitised TiO2 nanoparticles in aqueous solutions in the presence of a hole scavenger establishes the activity of the catalyst in this photocatalytic scheme. The advantages of the elaborate catalyst design in CoP3 in terms of stability and catalytic activity are shown by direct comparison with previously reported phosphonated Co catalysts. We therefore demonstrate that rational ligand design is a viable route for improving the performance of immobilised molecular catalysts.Support by the Christian Doppler Research Association (Austrian
Federal Ministry of Science, Research and Economy and
National Foundation for Research, Technology and Development),
the OMV Group and the EPSRC (EP/H00338X/2) is
gratefully acknowledged.This is the final published version. It first appeared at http://pubs.rsc.org/en/Content/ArticleLanding/2015/SC/c4sc03946g#!divAbstract
Distance dependent charge separation and recombination in semiconductor/molecular catalyst systems for water splitting
The photoinduced reduction of three Co electrocatalysts immobilised on TiO(2) is 10(4) times faster than the reverse charge recombination. Both processes show an exponential dependence on the distance between the semiconductor and the catalytic core
Northern blot detection of endogenous small RNAs (∼14 nt) in bacterial total RNA extracts
Here we describe a northern blot procedure that allows the detection of endogenous RNAs as small as ∼14 nt in total RNA extracts from bacteria. RNAs that small and as part of total bacterial RNA extracts usually escape detection by northern blotting. The approach combines LNA probes 5′-digoxigenin-endlabeled for non-radioactive probe detection with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide-mediated chemical crosslinking of RNAs to nylon membranes, and necessitates the use of native PAGE either with the TBE or MOPS buffer system
6S RNA regulation of relA alters ppGpp levels in early stationary phase
6S RNA is a small, non-coding RNA that interacts directly with σ70-RNA polymerase and regulates transcription at many σ70-dependent promoters. Here, we demonstrate that 6S RNA regulates transcription of relA, which encodes a ppGpp synthase. The 6S RNA-dependent regulation of relA expression results in increased ppGpp levels during early stationary phase in cells lacking 6S RNA. These changes in ppGpp levels, although modest, are sufficient to result in altered regulation of transcription from σ70-dependent promoters sensitive to ppGpp, including those promoting expression of genes involved in amino acid biosynthesis and rRNA. These data place 6S RNA as another player in maintaining appropriate gene expression as cells transition into stationary phase. Independent of this ppGpp-mediated 6S RNA-dependent regulation, we also demonstrate that in later stationary phase, 6S RNA continues to downregulate transcription in general, and specifically at a subset of the amino acid promoters, but through a mechanism that is independent of ppGpp and which we hypothesize is through direct regulation. In addition, 6S RNA-dependent regulation of σS activity is not mediated through observed changes in ppGpp levels. We suggest a role for 6S RNA in modulating transcription of several global regulators directly, including relA, to downregulate expression of key pathways in response to changing environmental conditions
Non-coding RNA annotation of the genome of Trichoplax adhaerens
A detailed annotation of non-protein coding RNAs is typically missing in initial releases of newly sequenced genomes. Here we report on a comprehensive ncRNA annotation of the genome of Trichoplax adhaerens, the presumably most basal metazoan whose genome has been published to-date. Since blast identified only a small fraction of the best-conserved ncRNAs—in particular rRNAs, tRNAs and some snRNAs—we developed a semi-global dynamic programming tool, GotohScan, to increase the sensitivity of the homology search. It successfully identified the full complement of major and minor spliceosomal snRNAs, the genes for RNase P and MRP RNAs, the SRP RNA, as well as several small nucleolar RNAs. We did not find any microRNA candidates homologous to known eumetazoan sequences. Interestingly, most ncRNAs, including the pol-III transcripts, appear as single-copy genes or with very small copy numbers in the Trichoplax genome
- …