60 research outputs found

    Peripheral injection of human umbilical cord blood stimulates neurogenesis in the aged rat brain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neurogenesis continues to occur throughout life but dramatically decreases with increasing age. This decrease is mostly related to a decline in proliferative activity as a result of an impoverishment of the microenvironment of the aged brain, including a reduction in trophic factors and increased inflammation.</p> <p>Results</p> <p>We determined that human umbilical cord blood mononuclear cells (UCBMC) given peripherally, by an intravenous injection, could rejuvenate the proliferative activity of the aged neural stem/progenitor cells. This increase in proliferation lasted for at least 15 days after the delivery of the UCBMC. Along with the increase in proliferation following UCBMC treatment, an increase in neurogenesis was also found in the aged animals. The increase in neurogenesis as a result of UCBMC treatment seemed to be due to a decrease in inflammation, as a decrease in the number of activated microglia was found and this decrease correlated with the increase in neurogenesis.</p> <p>Conclusion</p> <p>The results demonstrate that a single intravenous injection of UCBMC in aged rats can significantly improve the microenvironment of the aged hippocampus and rejuvenate the aged neural stem/progenitor cells. Our results raise the possibility of a peripherally administered cell therapy as an effective approach to improve the microenvironment of the aged brain.</p

    Human Umbilical Cord Blood Treatment in a Mouse Model of ALS: Optimization of Cell Dose

    Get PDF
    Amyotrophic Lateral Sclerosis (ALS) is a multicausal disease characterized by motor neuron degeneration in the spinal cord and brain. Cell therapy may be a promising new treatment for this devastating disorder. We recently showed that a single low dose (10(6) cells) of mononuclear human umbilical cord blood (MNC hUCB) cells administered intravenously to G93A mice delayed symptom progression and modestly prolonged lifespan. The aim of this pre-clinical translation study is to optimize the dose of MNC hUCB cells to retard disease progression in G93A mice. Three different doses of MNC hUCB cells, 10x10(6), 25x10(6) and 50x10(6), were administered intravenously into pre-symptomatic G93A mice. Motor function tests and various assays to determine cell effects were performed on these mice.Our results showed that a cell dose of 25x10(6) cells significantly increased lifespan of mice by 20-25% and delayed disease progression by 15%. The most beneficial effect on decreasing pro-inflammatory cytokines in the brain and spinal cord was found in this group of mice. Human Th2 cytokines were found in plasma of mice receiving 25x10(6) cells, although prevalent human Th1 cytokines were indicated in mice with 50x10(6) cells. High response of splenic cells to mitogen (PHA) was indicated in mice receiving 25x10(6) (mainly) and 10x10(6) cells. Significantly increased lymphocytes and decreased neutrophils in the peripheral blood were found only in animals receiving 25x10(6) cells. Stable reduction in microglia density in both cervical and lumbar spinal cords was also noted in mice administered with 25x10(6) cells.These results demonstrate that treatment for ALS with an appropriate dose of MNC hUCB cells may provide a neuroprotective effect for motor neurons through active involvement of these cells in modulating the host immune inflammatory system response

    Histone H3.3 beyond cancer: Germline mutations in Histone 3 Family 3A and 3B cause a previously unidentified neurodegenerative disorder in 46 patients

    Get PDF
    Although somatic mutations in Histone 3.3 (H3.3) are well-studied drivers of oncogenesis, the role of germline mutations remains unreported. We analyze 46 patients bearing de novo germline mutations in histone 3 family 3A (H3F3A) or H3F3B with progressive neurologic dysfunction and congenital anomalies without malignancies. Molecular modeling of all 37 variants demonstrated clear disruptions in interactions with DNA, other histones, and histone chaperone proteins. Patient histone posttranslational modifications (PTMs) analysis revealed notably aberrant local PTM patterns distinct from the somatic lysine mutations that cause global PTM dysregulation. RNA sequencing on patient cells demonstrated up-regulated gene expression related to mitosis and cell division, and cellular assays confirmed an increased proliferative capacity. A zebrafish model showed craniofacial anomalies and a defect in Foxd3-derived glia. These data suggest that the mechanism of germline mutations are distinct from cancer-associated somatic histone mutations but may converge on control of cell proliferation

    Ischemic tissue cell therapy

    No full text
    The present invention is directed to compositions and methods for treatment of ischemic diseases and conditions, particularly myocardial, CNS/brain and limb ischemia. More particularly, the present invention provides methods of treating disorders by administering monocytes obtained from blood, including umbilical cord blood, peripheral blood, or bone marrow to an individual in need of treatment, wherein the drug is administered to the individual at a time point specifically determined to provide therapeutic efficacy. In one embodiment, the cells are for injection into ischemic myocardium for the treatment of angina

    Potential of Mesenchymal Stem Cells Alone, or in Combination, to Treat Traumatic Brain Injury

    No full text
    Traumatic brain injury (TBI) causes death and disability in the United States and around the world. The traumatic insult causes the mechanical injury of the brain and primary cellular death. While a comprehensive pathological mechanism of TBI is still lacking, the focus of the TBI research is concentrated on understanding the pathophysiology and developing suitable therapeutic approaches. Given the complexities in pathophysiology involving interconnected immunologic, inflammatory, and neurological cascades occurring after TBI, the therapies directed to a single mechanism fail in the clinical trials. This has led to the development of the paradigm of a combination therapeutic approach against TBI. While there are no drugs available for the treatment of TBI, stem cell therapy has shown promising results in preclinical studies. But, the success of the therapy depends on the survival of the stem cells, which are limited by several factors including route of administration, health of the administered cells, and inflammatory microenvironment of the injured brain. Reducing the inflammation prior to cell administration may provide a better outcome of cell therapy following TBI. This review is focused on different therapeutic approaches of TBI and the present status of the clinical trials

    Potential of Mesenchymal Stem Cells Alone, or in Combination, to Treat Traumatic Brain Injury

    No full text
    Traumatic brain injury (TBI) causes death and disability in the United States and around the world. The traumatic insult causes the mechanical injury of the brain and primary cellular death. While a comprehensive pathological mechanism of TBI is still lacking, the focus of the TBI research is concentrated on understanding the pathophysiology and developing suitable therapeutic approaches. Given the complexities in pathophysiology involving interconnected immunologic, inflammatory, and neurological cascades occurring after TBI, the therapies directed to a single mechanism fail in the clinical trials. This has led to the development of the paradigm of a combination therapeutic approach against TBI. While there are no drugs available for the treatment of TBI, stem cell therapy has shown promising results in preclinical studies. But, the success of the therapy depends on the survival of the stem cells, which are limited by several factors including route of administration, health of the administered cells, and inflammatory microenvironment of the injured brain. Reducing the inflammation prior to cell administration may provide a better outcome of cell therapy following TBI. This review is focused on different therapeutic approaches of TBI and the present status of the clinical trials

    Ischemic tissue cell therapy

    No full text
    The present invention is directed to compositions and methods for treatment of ischemic diseases and conditions, particularly myocardial, CNS/brain and limb ischemia. More particularly, the present invention provides methods of treating disorders by administering monocytes obtained from blood, including umbilical cord blood, peripheral blood, or bone marrow to an individual in need of treatment, wherein the drug is administered to the individual at a time point specifically determined to provide therapeutic efficacy. In one embodiment, the cells are for injection into ischemic myocardium for the treatment of angina
    • …
    corecore