8,148 research outputs found
Stress Drops on the Blanco Oceanic Transform Fault from Interstation Phase Coherence
Oceanic transform faults display a wide range of earthquake stress drops, large aseismic slip, and alongâstrike variation in seismic coupling. We use and further develop a phase coherenceâbased method to calculate and analyze stress drops of 61 MâĽ5.0 events between 2000 and 2016 on the Blanco fault, off the coast of Oregon. With this method, we estimate earthquake rupture extents by examining how apparent source time functions (ASTFs) vary between stations. The variation is caused by the generation of seismic waves at different locations along the rupture, which arrive at different times depending on station location. We isolate ASTFs at a range of stations by comparing seismograms of collocated earthquakes and then use the interstation ASTF coherence to infer rupture extent and stress drop.
We examine how our analysis is influenced by various factors, including poor trace alignment, relative earthquake locations, focal mechanism variation, azimuthal distribution of stations, and depth phase arrivals. We find that as alignment accuracy decreases or distance between earthquakes increases, coherence is reduced, but coherence is unaffected by focal mechanism variation or depth phase arrivals for our dataset. We calibrate the coherenceârupture extent relationship based on the azimuthal distribution of stations.
We find the phase coherence method can be used to estimate stress drops for offshore earthquakes, but is limited to MâĽ5.0 earthquakes for the Blanco fault due to poor trace alignment accuracy. The median stress drop on the Blanco fault is 8 MPa (with 95% confidence limits of 6â12 MPa) for 61 earthquakes. Stress drops are a factor of 1.7 (95% confidence limits 0.8â3.5) lower on the more aseismic northwest segment of the Blanco fault. These lower stress drops could be linked to reduced healing time due to higher temperatures, which reduce the depth of the seismogenic zone and shorten the seismic cycle
Software Lock Mass by Two-Dimensional Minimization of Peptide Mass Errors
Mass accuracy is a key parameter in proteomic experiments, improving specificity, and success rates of peptide identification. Advances in instrumentation now make it possible to routinely obtain high resolution data in proteomic experiments. To compensate for drifts in instrument calibration, a compound of known mass is often employed. This âlock massâ provides an internal mass standard in every spectrum. Here we take advantage of the complexity of typical peptide mixtures in proteomics to eliminate the requirement for a physical lock mass. We find that mass scale drift is primarily a function of the m/z and the elution time dimensions. Using a subset of high confidence peptide identifications from a first pass database search, which effectively substitute for the lock mass, we set up a global mathematical minimization problem. We perform a simultaneous fit in two dimensions using a function whose parameterization is automatically adjusted to the complexity of the analyzed peptide mixture. Mass deviation of the high confidence peptides from their calculated values is then minimized globally as a function of both m/z value and elution time. The resulting recalibration function performs equal or better than adding a lock mass from laboratory air to LTQ-Orbitrap spectra. This âsoftware lock massâ drastically improves mass accuracy compared with mass measurement without lock mass (up to 10-fold), with none of the experimental cost of a physical lock mass, and it integrated into the freely available MaxQuant analysis pipeline (www.maxquant.org)
Personalising Neoadjuvant Chemotherapy for Locally Advanced Colon Cancer: Protocols for the International Phase III FOxTROT2 and FOxTROT3 Randomised-Controlled Trials
Aim
FOxTROT1 established a new standard of care for managing locally advanced colon cancer (CC) with neoadjuvant chemotherapy (NAC). Six weeks of neoadjuvant oxaliplatin and fluoropyrimidine (OxFp) chemotherapy was associated with greater 2-year disease-free survival (DFS) when compared to proceeding straight to surgery (STS). There is now a need to refine the use of NAC and identify those most likely to benefit. FOxTROT2 will investigate NAC in older adults and those with frailty. FOxTROT3 will assess whether intensified triplet NAC provides additional benefits over OxFp.
Methods
FOxTROT2 and FOxTROT3 are international, open-label, phase III randomised-controlled trials. Eligible patients will be identified by the multidisciplinary team. Patient age, frailty and comorbidities will be considered to guide trial entry. Participants will be randomised 2:1 to the intervention or control arm: six weeks of dose-adapted neoadjuvant OxFp vs. STS in FOxTROT2 and six weeks of neoadjuvant modified oxaliplatin, 5FU and irinotecan (mFOLFOXIRI) vs. OxFp in FOxTROT3. The primary endpoint in FOxTROT2 is 3-year DFS. In FOxTROT3, tumour regression grade and 3-year DFS are co-primary endpoints.
Discussion
FOxTROT2 and FOxTROT3 will establish the FOxTROT platform, a key part of our long-term strategy to develop neoadjuvant treatments for CC. FOxTROT2 will investigate NAC in a population under-represented in FOxTROT1 and wider research. FOxTROT3 will assess whether it is possible to induce greater early tumour responses and whether this translates to superior long-term outcomes. Looking ahead, the FOxTROT platform will facilitate further trial comparisons and extensive translational research to optimise the use of NAC in CC
Nondestructive analysis of urinary calculi using micro computed tomography
BACKGROUND: Micro computed tomography (micro CT) has been shown to provide exceptionally high quality imaging of the fine structural detail within urinary calculi. We tested the idea that micro CT might also be used to identify the mineral composition of urinary stones non-destructively. METHODS: Micro CT x-ray attenuation values were measured for mineral that was positively identified by infrared microspectroscopy (FT-IR). To do this, human urinary stones were sectioned with a diamond wire saw. The cut surface was explored by FT-IR and regions of pure mineral were evaluated by micro CT to correlate x-ray attenuation values with mineral content. Additionally, intact stones were imaged with micro CT to visualize internal morphology and map the distribution of specific mineral components in 3-D. RESULTS: Micro CT images taken just beneath the cut surface of urinary stones showed excellent resolution of structural detail that could be correlated with structure visible in the optical image mode of FT-IR. Regions of pure mineral were not difficult to find by FT-IR for most stones and such regions could be localized on micro CT images of the cut surface. This was not true, however, for two brushite stones tested; in these, brushite was closely intermixed with calcium oxalate. Micro CT x-ray attenuation values were collected for six minerals that could be found in regions that appeared to be pure, including uric acid (3515 â 4995 micro CT attenuation units, AU), struvite (7242 â 7969 AU), cystine (8619 â 9921 AU), calcium oxalate dihydrate (13815 â 15797 AU), calcium oxalate monohydrate (16297 â 18449 AU), and hydroxyapatite (21144 â 23121 AU). These AU values did not overlap. Analysis of intact stones showed excellent resolution of structural detail and could discriminate multiple mineral types within heterogeneous stones. CONCLUSIONS: Micro CT gives excellent structural detail of urinary stones, and these results demonstrate the feasibility of identifying and localizing most of the common mineral types found in urinary calculi using laboratory CT
A preliminary report of an educational intervention in practice management
BACKGROUND: Practice management education continues to evolve, and little information exists regarding its curriculum design and effectiveness for resident education. We report the results of an exploratory study of a practice management curriculum for primary care residents. METHODS: After performing a needs assessment with a group of primary care residents at Wright State University, we designed a monthly seminar series covering twelve practice management topics. The curriculum consisted of interactive lectures and practice-based application, whenever possible. We descriptively evaluated two cognitive components (practice management knowledge and skills) and the residents' evaluation of the curriculum. RESULTS: The mean correct on the knowledge test for this group of residents was 74% (n = 12) and 91% (n = 12) before and after the curriculum, respectively. The mean scores for the practice management skill assessments were 2.62 before (n = 12), and 3.65 after (n = 12) the curriculum (modified Likert, 1 = strongly disagree, 5 = strongly agree). The residents rated the curriculum consistently high. CONCLUSIONS: This exploratory study suggests that this curriculum may be useful in developing knowledge and skills in practice management for primary care residents. This study suggests further research into evaluation of this curriculum may be informative for practice-based education
Management of high-risk corneal grafts
MACMILLAN BUILDING,4 CRINAN ST, LONDON,
ENGLAND, N1 9X
Type Ia Supernova Explosion Models
Because calibrated light curves of Type Ia supernovae have become a major
tool to determine the local expansion rate of the Universe and also its
geometrical structure, considerable attention has been given to models of these
events over the past couple of years. There are good reasons to believe that
perhaps most Type Ia supernovae are the explosions of white dwarfs that have
approached the Chandrasekhar mass, M_ch ~ 1.39 M_sun, and are disrupted by
thermonuclear fusion of carbon and oxygen. However, the mechanism whereby such
accreting carbon-oxygen white dwarfs explode continues to be uncertain. Recent
progress in modeling Type Ia supernovae as well as several of the still open
questions are addressed in this review. Although the main emphasis will be on
studies of the explosion mechanism itself and on the related physical
processes, including the physics of turbulent nuclear combustion in degenerate
stars, we also discuss observational constraints.Comment: 38 pages, 4 figures, Annual Review of Astronomy and Astrophysics, in
pres
Comparing the Bacterial Diversity of Acute and Chronic Dental Root Canal Infections
This study performed barcoded multiplex pyrosequencing with a 454 FLX instrument to compare the microbiota of dental root canal infections associated with acute (symptomatic) or chronic (asymptomatic) apical periodontitis. Analysis of samples from 9 acute abscesses and 8 chronic infections yielded partial 16S rRNA gene sequences that were taxonomically classified into 916 bacterial species-level operational taxonomic units (OTUs) (at 3% divergence) belonging to 67 genera and 13 phyla. The most abundant phyla in acute infections were Firmicutes (52%), Fusobacteria (17%) and Bacteroidetes (13%), while in chronic infections the dominant were Firmicutes (59%), Bacteroidetes (14%) and Actinobacteria (10%). Members of Fusobacteria were much more prevalent in acute (89%) than in chronic cases (50%). The most abundant/prevalent genera in acute infections were Fusobacterium and Parvimonas. Twenty genera were exclusively detected in acute infections and 18 in chronic infections. Only 18% (nâ=â165) of the OTUs at 3% divergence were shared by acute and chronic infections. Diversity and richness estimators revealed that acute infections were significantly more diverse than chronic infections. Although a high interindividual variation in bacterial communities was observed, many samples tended to group together according to the type of infection (acute or chronic). This study is one of the most comprehensive in-deep comparisons of the microbiota associated with acute and chronic dental root canal infections and highlights the role of diverse polymicrobial communities as the unit of pathogenicity in acute infections. The overall diversity of endodontic infections as revealed by the pyrosequencing technique was much higher than previously reported for endodontic infections
Visual, Motor and Attentional Influences on Proprioceptive Contributions to Perception of Hand Path Rectilinearity during Reaching
We examined how proprioceptive contributions to perception of hand path straightness are influenced by visual, motor and attentional sources of performance variability during horizontal planar reaching. Subjects held the handle of a robot that constrained goal-directed movements of the hand to the paths of controlled curvature. Subjects attempted to detect the presence of hand path curvature during both active (subject driven) and passive (robot driven) movements that either required active muscle force production or not. Subjects were less able to discriminate curved from straight paths when actively reaching for a target versus when the robot moved their hand through the same curved paths. This effect was especially evident during robot-driven movements requiring concurrent activation of lengthening but not shortening muscles. Subjects were less likely to report curvature and were more variable in reporting when movements appeared straight in a novel âvisual channelâ condition previously shown to block adaptive updating of motor commands in response to deviations from a straight-line hand path. Similarly, compromised performance was obtained when subjects simultaneously performed a distracting secondary task (key pressing with the contralateral hand). The effects compounded when these last two treatments were combined. It is concluded that environmental, intrinsic and attentional factors all impact the ability to detect deviations from a rectilinear hand path during goal-directed movement by decreasing proprioceptive contributions to limb state estimation. In contrast, response variability increased only in experimental conditions thought to impose additional attentional demands on the observer. Implications of these results for perception and other sensorimotor behaviors are discussed
- âŚ