48,928 research outputs found

    Lattice quark propagator with staggered quarks in Landau and Laplacian gauges

    Get PDF
    We report on the lattice quark propagator using standard and improved Staggered quark actions, with the standard, Wilson gauge action. The standard Kogut-Susskind action has errors of \oa{2} while the ``Asqtad'' action has \oa{4}, \oag{2}{2} errors. The quark propagator is interesting for studying the phenomenon of dynamical chiral symmetry breaking and as a test-bed for improvement. Gauge dependent quantities from lattice simulations may be affected by Gribov copies. We explore this by studying the quark propagator in both Landau and Laplacian gauges. Landau and Laplacian gauges are found to produce very similar results for the quark propagator.Comment: 11 pages, 15 figure

    Modelling the quark propagator

    Get PDF
    The quark propagator is at the core of lattice hadron spectrum calculations as well as studies in other nonperturbative schemes. We investigate the quark propagator with an improved staggered action (Asqtad) and an improved gluon action, which provides good quality data down to small quark masses. This is used to construct ans\"{a}tze suitable for model hadron calculations as well as adding to our intuitive understanding of QCD.Comment: Lattice2002(spectrum

    The EXOSAT medium-energy slew survey catalog

    Get PDF
    We present a catalog of X-ray sources observed during slew maneuvers by the Medium Energy Detector Array onboard the EXOSAT Observatory. The EXOSAT Medium Energy slew-survey catalog (EXMS) provides a unique record of the 1--8 keV X-ray sky between 1983 and 1986. 98% of the sky was observed, with 85% receiving an exposure of >60 s. 1210 sources were detected. By comparing these source positions with other catalogs, identifications are given for 992 detections (82% of the sample). These identifications consist of 250 distinct objects, including 95 different X-ray binary systems, and 14 different AGN. A further 58 detections have multiple candidates, while 160 detections remain unidentified. Collimator transmission corrected 1-8 keV count rates are given for the identified sources, together with raw count rates for the other detections. The construction of the EXMS and the checks performed to ensure the validity of the derived source properties are discussed. A publically available version of this catalog is maintained on the EXOSAT database and archive system (telnet://[email protected]).Comment: 52 pages. 22 Figures. To be published in A&AS. For more information, see http://astro.estec.esa.nl/SA-general/Projects/Exosat/exmsintro.htm

    Non-thermal high-energy emission from colliding winds of massive stars

    Full text link
    Colliding winds of massive star binary systems are considered as potential sites of non-thermal high-energy photon production. This is motivated merely by the detection of synchrotron radio emission from the expected colliding wind location. Here we investigate the properties of high-energy photon production in colliding winds of long-period WR+OB-systems. We found that in the dominating leptonic radiation process anisotropy and Klein-Nishina effects may yield spectral and variability signatures in the gamma-ray domain at or above the sensitivity of current or upcoming gamma-ray telescopes. Analytical formulae for the steady-state particle spectra are derived assuming diffusive particle acceleration out of a pool of thermal wind particles, and taking into account adiabatic and all relevant radiative losses. For the first time we include their advection/convection in the wind collision zone, and distinguish two regions within this extended region: the acceleration region where spatial diffusion is superior to convective/advective motion, and the convection region defined by the convection time shorter than the diffusion time scale. The calculation of the Inverse Compton radiation uses the full Klein-Nishina cross section, and takes into account the anisotropic nature of the scattering process. This leads to orbital flux variations by up to several orders of magnitude which may, however, be blurred by the geometry of the system. The calculations are applied to the typical WR+OB-systems WR 140 and WR 147 to yield predictions of their expected spectral and temporal characteristica and to evaluate chances to detect high-energy emission with the current and upcoming gamma-ray experiments. (abridged)Comment: 67 pages, 24 figures, submitted to Ap

    Scaling Behavior of the Landau Gauge Overlap Quark Propagator

    Get PDF
    The properties of the momentum space quark propagator in Landau gauge are examined for the overlap quark action in quenched lattice QCD. Numerical calculations are done on three lattices with different lattice spacings and similar physical volumes to explore the approach of the quark propagator towards the continuum limit. We have calculated the nonperturbative momentum-dependent wavefunction renormalization function Z(p2)Z(p^2) and the nonperturbative mass function M(p2)M(p^2) for a variety of bare quark masses and extrapolate to the chiral limit. We find the behavior of Z(p2)Z(p^2) and M(p2)M(p^2) are in good agreement for the two finer lattices in the chiral limit. The quark condensate is also calculated.Comment: 3 pages, Lattice2003(Chiral fermions

    Scaling behavior of quark propagator in full QCD

    Get PDF
    We study the scaling behavior of the quark propagator on two lattices with similar physical volume in Landau gauge with 2+1 flavors of dynamical quarks in order to test whether we are close to the continuum limit for these lattices. We use configurations generated with an improved staggered (``Asqtad'') action by the MILC collaboration. The calculations are performed on 283×9628^3\times 96 lattices with lattice spacing a=0.09a = 0.09 fm and on 203×6420^3\times 64 lattices with lattice spacing a=0.12a = 0.12 fm. We calculate the quark mass function, M(q2)M(q^2), and the wave-function renormalization function, Z(q2)Z(q^2), for a variety of bare quark masses. Comparing the behavior of these functions on the two sets of lattices we find that both Z(q2)Z(q^2) and M(q2)M(q^2) show little sensitivity to the ultraviolet cutoff.Comment: 6 pages, 5 figure

    Pulsation in carbon-atmosphere white dwarfs: A new chapter in white dwarf asteroseismology

    Full text link
    We present some of the results of a survey aimed at exploring the asteroseismological potential of the newly-discovered carbon-atmosphere white dwarfs. We show that, in certains regions of parameter space, carbon-atmosphere white dwarfs may drive low-order gravity modes. We demonstrate that our theoretical results are consistent with the recent exciting discovery of luminosity variations in SDSS J1426+5752 and some null results obtained by a team of scientists at McDonald Observatory. We also present follow-up photometric observations carried out by ourselves at the Mount Bigelow 1.6-m telescope using the new Mont4K camera. The results of follow-up spectroscopic observations at the MMT are also briefly reported, including the surprising discovery that SDSS J1426+5752 is not only a pulsating star but that it is also a magnetic white dwarf with a surface field near 1.2 MG. The discovery of gg-mode pulsations in SDSS J1426+5752 is quite significant in itself as it opens a fourth asteroseismological "window", after the GW Vir, V777 Her, and ZZ Ceti families, through which one may study white dwarfs.Comment: 7 pages, 4 figures, to appear in Journal of Physics Conference Proceedings for the 16th European White Dwarf Worksho

    Private Incremental Regression

    Full text link
    Data is continuously generated by modern data sources, and a recent challenge in machine learning has been to develop techniques that perform well in an incremental (streaming) setting. In this paper, we investigate the problem of private machine learning, where as common in practice, the data is not given at once, but rather arrives incrementally over time. We introduce the problems of private incremental ERM and private incremental regression where the general goal is to always maintain a good empirical risk minimizer for the history observed under differential privacy. Our first contribution is a generic transformation of private batch ERM mechanisms into private incremental ERM mechanisms, based on a simple idea of invoking the private batch ERM procedure at some regular time intervals. We take this construction as a baseline for comparison. We then provide two mechanisms for the private incremental regression problem. Our first mechanism is based on privately constructing a noisy incremental gradient function, which is then used in a modified projected gradient procedure at every timestep. This mechanism has an excess empirical risk of d\approx\sqrt{d}, where dd is the dimensionality of the data. While from the results of [Bassily et al. 2014] this bound is tight in the worst-case, we show that certain geometric properties of the input and constraint set can be used to derive significantly better results for certain interesting regression problems.Comment: To appear in PODS 201

    Quantum Measurement of a Single Spin using Magnetic Resonance Force Microscopy

    Get PDF
    Single-spin detection is one of the important challenges facing the development of several new technologies, e.g. single-spin transistors and solid-state quantum computation. Magnetic resonance force microscopy with a cyclic adiabatic inversion, which utilizes a cantilever oscillations driven by a single spin, is a promising technique to solve this problem. We have studied the quantum dynamics of a single spin interacting with a quasiclassical cantilever. It was found that in a similar fashion to the Stern-Gerlach interferometer the quantum dynamics generates a quantum superposition of two quasiclassical trajectories of the cantilever which are related to the two spin projections on the direction of the effective magnetic field in the rotating reference frame. Our results show that quantum jumps will not prevent a single-spin measurement if the coupling between the cantilever vibrations and the spin is small in comparison with the amplitude of the radio-frequency external field.Comment: 16 pages RevTeX including 4 figure
    corecore