59 research outputs found

    Towards New Strategies for Improving the Transfer of Innovation Between University and the Food Industry

    Get PDF
    All commerce relies on effective strategies for completing a deal, but conducting the transaction at the university-industry interface with an intangible asset represented by research results remains a difficult proposition. Beyond differences of mission and culture, it is usually assumed that the established language of technology transfer can permit productive communication by a university across a wide diversity of industries. However, the experience of the authors indicates that an appreciation of aspects such as subtleties of language, conflicting goals, and market understanding must also be brought to bear in successfully completing a transaction. Information asymmetry remains a key challenge to overcome in this task, and the example of the food industry represents a special case. This article reviews key developments in technology transfer of food innovation across the university-industry interface in Ireland and suggests possible new directions for exploration in order to improve the effectiveness of this process

    Nitrocellulose as a General Tool for Fungal Slide Mounts

    Get PDF

    Evaluation of brewer\u27s spent grain hydrolysate as a substrate for production of thermostable α-amylase by Bacillus stearothermophilus

    Get PDF
    In the present study, BSG was hydrolysed using cellulolytic enzymes and used as a growth medium supplement for cultivation of the thermophilic bacterium, Bacillus stearothermophilus in the production of α-amylase. A central composite design involving five parameters and four levels viz. starch, peptone, KCl, and MgSO4 along with BSG hydrolysate was used to derive the optimal media composition. The fermentation was conducted using shake flasks for 36 h at a temperature of 50 °C and pH 7.0 at 220 rpm. Optimization trials revealed that maximal amylase production (198.09 U/ml) occurred with a medium composition of starch (0.2% w/v), peptone (0.2% w/v), KCl·4 H2O (0.02% w/v), MgSO4·7 H2O (0.01% w/v) and hydrolysate (0.22% v/v). A 1.3-fold increase in amylase activity was obtained following novel media composition. All the factors considered in the study were found to be significant. The enzyme was purified by three step purification strategy, characterised and tested for anti-biofilm activity

    Lignocellulosic Biorefineries in Europe: Current State and Prospects

    Get PDF
    Lignocellulosic biorefining processes plant-derived biomass into a range of bio-based products. Currently, more than 40 lignocellulosic biorefineries are operating across Europe. Here, we address the challenges and future opportunities of this nascent industry by elucidating key elements of the biorefining sector, including feedstock sourcing, processing methods, and the bioproducts market

    Moving Towards the Second Generation of Lignocellulosic Biorefineries in the EU: Drivers, Challenges, and Opportunities

    Get PDF
    The EU aims to achieve a variety of ambitious climate change mitigation and sustainable development goals by 2030. To deliver on this aim, the European Commission (EC) launched the bioeconomy strategy in 2012. At the heart of this policy is the concept of the sustainable Biorefinery, which is based centrally on a cost-effective conversion of lignocellulosic biomass into bioenergy and bioproducts. The first generation of biorefineries was based on utilization of edible food crops, which raised a “food vs. fuel” debate and questionable sustainability issues. To overcome this, lignocellulosic feedstock options currently being pursued range from non-food crops to agroforestry residues and wastes. Notwithstanding this, advanced biorefining is still an emerging sector, with unanswered questions relating to the choice of feedstocks, cost-effective lignocellulosic pretreatment, and identification of viable end products that will lead to sustainable development of this industry. Therefore, this review aims to provide a critical update on the possible future directions of this sector, with an emphasis on its role in the future European bioeconomy, against a background of global developments

    Moving Towards the Second Generation of Lignocellulosic Biorefineries in the EU: Drivers, Challenges, and Opportunities

    Get PDF
    The EU aims to achieve a variety of ambitious climate change mitigation and sustainable development goals by 2030. To deliver on this aim, the European Commission (EC) launched the bioeconomy strategy in 2012. At the heart of this policy is the concept of the sustainable Biorefinery, which is based centrally on a cost-effective conversion of lignocellulosic biomass into bioenergy and bioproducts. The first generation of biorefineries was based on utilization of edible food crops, which raised a “food vs. fuel” debate and questionable sustainability issues. To overcome this, lignocellulosic feedstock options currently being pursued range from non-food crops to agroforestry residues and wastes. Notwithstanding this, advanced biorefining is still an emerging sector, with unanswered questions relating to the choice of feedstocks, cost-effective lignocellulosic pretreatment, and identification of viable end products that will lead to sustainable development of this industry. Therefore, this review aims to provide a critical update on the possible future directions of this sector, with an emphasis on its role in the future European bioeconomy, against a background of global developments

    Biofabrication of magnetic nanoparticles and their use as carriers for pectinase and xylanase

    Get PDF
    In this study, superparamagnetic iron oxide nanoparticles (MNPs) were synthesized via exposure of fungal cell filtrate from Aspergillus flavus to aqueous iron ions. The extracellular synthesis of MNPs was monitored by UV–Vis spectrophotometry and showed an absorption peak at 310 nm. The morphology of MNPs was found to be flake-like, as confirmed by Field Emission Scanning Electron Microscopy (FESEM), while the average crystallite size was ∼16 nm, as determined by X-ray diffraction (XRD). Energy dispersive X-ray (EDX) analysis was performed to confirm the presence of elemental Fe in the sample. Pectinase and xylanase were covalently immobilized on MNPs with efficiencies of ∼84% and 77%, respectively. Compared to the free enzymes, the immobilized enzymes were found to exhibit enhanced tolerance to variation of pH and temperature and demonstrated improved storage stability. Furthermore, the residual activity of the immobilized enzymes was about 56% for pectinase and 52% for xylanase, after four and three consecutive use cycles, respectively

    A Review on Bioconversion of Agro-Industrial Wastes to Industrially Important Enzymes

    Get PDF
    Agro-industrial waste is highly nutritious in nature and facilitates microbial growth. Most agricultural wastes are lignocellulosic in nature; a large fraction of it is composed of carbohydrates. Agricultural residues can thus be used for the production of various value-added products, such as industrially important enzymes. Agro-industrial wastes, such as sugar cane bagasse, corn cob and rice bran, have been widely investigated via different fermentation strategies for the production of enzymes. Solid-state fermentation holds much potential compared with submerged fermentation methods for the utilization of agro-based wastes for enzyme production. This is because the physical–chemical nature of many lignocellulosic substrates naturally lends itself to solid phase culture, and thereby represents a means to reap the acknowledged potential of this fermentation method. Recent studies have shown that pretreatment technologies can greatly enhance enzyme yields by several fold. This article gives an overview of how agricultural waste can be productively harnessed as a raw material for fermentation. Furthermore, a detailed analysis of studies conducted in the production of different commercially important enzymes using lignocellulosic food waste has been provided

    An Evaluation of Sonication Pretreatment for Enhancing Saccharification of Brewers’ Spent Grain

    Get PDF
    This paper deals with the investigation of ultrasound (US) pretreatment of brewer’s spent grain (BSG) as ameans of releasing fermentable sugars, and the subsequent production of ethanol from this lignocellu-losic biomass. Using response surface methodology (RSM), the influence of US power, time, temperatureand biomass loading on fermentable sugar yield from BSG was studied. The optimal conditions werefound to be 20% US power, 60 min, 26.3°C, and 17.3% w/v of biomass in water. Under these conditions,an approximate 2.1-fold increase in reducing sugar yield (325 ± 6 mg/g of biomass) was achieved, relativeto untreated BSG (151.1 ± 10 mg/g of biomass). In contrast to acid or alkaline pretreatment approaches,the use of water obviated the need for neutralization for the recovery of sugars. The characterization ofnative and pretreated BSG was performed by HPLC, FTIR, SEM and DSC. Fermentation studies usingS.cerevisiaegrowing on pretreated BSG resulted in a conversion of 66% of the total sugar content inintoethanol with an ethanol content of 17.73 ± 2 g/ 100 g of pretreated BSG. These results suggest that ultra-sound pretreatment is a promising technology for increased valorization of BSG as a feedstock for produc-tion of bioethanol, and points ton the need for further work in this are

    Bioprocessing of brewers\u27 spent grain for production of xylanopectinolytic enzymes by Mucor sp.

    Get PDF
    The potential of microwave and ultrasound was evaluated for the pretreatment of brewer\u27s spent grain (BSG). Under optimal conditions of microwave and ultrasound pretreatments, reducing sugar yields per 1 g of pretreated BSG were 64.4 ± 7 mg and 39.9 ± 6 mg, respectively. Subsequently, the pretreated BSG was evaluated as a substrate for production of Xylanopectinolytic enzymes using fungi isolated from spoiled fruits. Out of twenty-nine (29) isolates recovered, Mucor sp. (AB1) isolated from Bramley apple (Malus domestica) produced xylanopectinolytic enzymes with higher specific activity, and was selected for further studies. The highest enzyme activity (137 U/g, and 67 U/g BSG, for pectinase and xylanase, respectively) was achieved in a medium that contained 15 g of BSG, at pH 6, temperature of 30 °C, supplemented with 1% xylan or pectin for inducing the production of xylanase or pectinase, respectively. The partially purified xylanopectinolytic enzymes were optimally active at 60 °C and pH 5
    corecore