7,827 research outputs found

    Understanding customers' holistic perception of switches in automotive human–machine interfaces

    Get PDF
    For successful new product development, it is necessary to understand the customers' holistic experience of the product beyond traditional task completion, and acceptance measures. This paper describes research in which ninety-eight UK owners of luxury saloons assessed the feel of push-switches in five luxury saloon cars both in context (in-car) and out of context (on a bench). A combination of hedonic data (i.e. a measure of ‘liking’), qualitative data and semantic differential data was collected. It was found that customers are clearly able to differentiate between switches based on the degree of liking for the samples' perceived haptic qualities, and that the assessment environment had a statistically significant effect, but that it was not universal. A factor analysis has shown that perceived characteristics of switch haptics can be explained by three independent factors defined as ‘Image’, ‘Build Quality’, and ‘Clickiness’. Preliminary steps have also been taken towards identifying whether existing theoretical frameworks for user experience may be applicable to automotive human–machine interfaces

    A Spectroscopic Survey of the Fields of 28 Strong Gravitational Lenses: Implications for H0H_0

    Full text link
    Strong gravitational lensing provides an independent measurement of the Hubble parameter (H0H_0). One remaining systematic is a bias from the additional mass due to a galaxy group at the lens redshift or along the sightline. We quantify this bias for more than 20 strong lenses that have well-sampled sightline mass distributions, focusing on the convergence κ\kappa and shear γ\gamma. In 23% of these fields, a lens group contributes a \ge1% convergence bias; in 57%, there is a similarly significant line-of-sight group. For the nine time delay lens systems, H0H_0 is overestimated by 112+3^{+3}_{-2}% on average when groups are ignored. In 67% of fields with total κ\kappa \ge 0.01, line-of-sight groups contribute 2×\gtrsim 2\times more convergence than do lens groups, indicating that the lens group is not the only important mass. Lens environment affects the ratio of four (quad) to two (double) image systems; all seven quads have lens groups while only three of 10 doubles do, and the highest convergences due to lens groups are in quads. We calibrate the γ\gamma-κ\kappa relation: log(κtot)=(1.94±0.34)log(γtot)+(1.31±0.49)\log(\kappa_{\rm{tot}}) = (1.94 \pm 0.34) \log(\gamma_{\rm{tot}}) + (1.31 \pm 0.49) with a rms scatter of 0.34 dex. Shear, which, unlike convergence, can be measured directly from lensed images, can be a poor predictor of κ\kappa; for 19% of our fields, κ\kappa is 2γ\gtrsim 2\gamma. Thus, accurate cosmology using strong gravitational lenses requires precise measurement and correction for all significant structures in each lens field.Comment: 34 pages, 11 figures, accepted for publication in Ap

    Mesoscopic Effects in Quantum Phases of Ultracold Quantum Gases in Optical Lattices

    Full text link
    We present a wide array of quantum measures on numerical solutions of 1D Bose- and Fermi-Hubbard Hamiltonians for finite-size systems with open boundary conditions. Finite size effects are highly relevant to ultracold quantum gases in optical lattices, where an external trap creates smaller effective regions in the form of the celebrated "wedding cake" structure and the local density approximation is often not applicable. Specifically, for the Bose-Hubbard Hamiltonian we calculate number, quantum depletion, local von-Neumann entropy, generalized entanglement or Q-measure, fidelity, and fidelity susceptibility; for the Fermi-Hubbard Hamiltonian we also calculate the pairing correlations, magnetization, charge-density correlations, and antiferromagnetic structure factor. Our numerical method is imaginary time propagation via time-evolving block decimation. As part of our study we provide a careful comparison of canonical vs. grand canonical ensembles and Gutzwiller vs. entangled simulations. The most striking effect of finite size occurs for bosons: we observe a strong blurring of the tips of the Mott lobes accompanied by higher depletion, and show how the location of the first Mott lobe tip approaches the thermodynamic value as a function of system size.Comment: 13 pages, 10 figure

    SN2013fs and SN2013fr: Exploring the circumstellar-material diversity in Type II supernovae

    Full text link
    We present photometry and spectroscopy of SN2013fs and SN2013fr in the first 100 days post-explosion. Both objects showed transient, relatively narrow Hα\alpha emission lines characteristic of SNeIIn, but later resembled normal SNeII-P or SNeII-L, indicative of fleeting interaction with circumstellar material (CSM). SN2013fs was discovered within 8hr of explosion. Its light curve exhibits a plateau, with spectra revealing strong CSM interaction at early times. It is a less luminous version of the transitional SNIIn PTF11iqb, further demonstrating a continuum of CSM interaction intensity between SNeII-P and IIn. It requires dense CSM within 6.5×\times1014^{14}~cm of the progenitor, from a phase of advanced pre-SN mass loss shortly before explosion. Spectropolarimetry of SN2013fs shows little continuum polarization, but noticeable line polarization during the plateau phase. SN2013fr morphed from a SNIIn at early times to a SNII-L. After the first epoch its narrow lines probably arose from host-galaxy emission, but the bright, narrow Hα\alpha emission at early times may be intrinsic. As for SN2013fs, this would point to a short-lived phase of strong CSM interaction if proven to be intrinsic, suggesting a continuum between SNeIIn and II-L. It is a low-velocity SNII-L, like SN2009kr but more luminous. SN2013fr also developed an IR excess at later times, due to warm CSM dust that require a more sustained phase of strong pre-SN mass loss.Comment: MNRAS accepted. 28 pages, 23 figures, 8 table
    corecore