7,078 research outputs found
Assessing the relationship between spectral solar irradiance and stratospheric ozone using Bayesian inference
We investigate the relationship between spectral solar irradiance (SSI) and
ozone in the tropical upper stratosphere. We find that solar cycle (SC) changes
in ozone can be well approximated by considering the ozone response to SSI
changes in a small number individual wavelength bands between 176 and 310 nm,
operating independently of each other. Additionally, we find that the ozone
varies approximately linearly with changes in the SSI. Using these facts, we
present a Bayesian formalism for inferring SC SSI changes and uncertainties
from measured SC ozone profiles. Bayesian inference is a powerful,
mathematically self-consistent method of considering both the uncertainties of
the data and additional external information to provide the best estimate of
parameters being estimated. Using this method, we show that, given measurement
uncertainties in both ozone and SSI datasets, it is not currently possible to
distinguish between observed or modelled SSI datasets using available estimates
of ozone change profiles, although this might be possible by the inclusion of
other external constraints. Our methodology has the potential, using wider
datasets, to provide better understanding of both variations in SSI and the
atmospheric response.Comment: 21 pages, 4 figures, Journal of Space Weather and Space Climate
(accepted), pdf version is in draft mode of Space Weather and Space Climat
From quantum to classical instability in relativistic stars
It has been shown that gravitational fields produced by realistic
classical-matter distributions can force quantum vacuum fluctuations of some
nonminimally coupled free scalar fields to undergo a phase of exponential
growth. The consequences of this unstable phase to the background spacetime
have not been addressed so far due to known difficulties concerning
backreaction in semiclassical gravity. It seems reasonable to believe, however,
that the quantum fluctuations will "classicalize" when they become large
enough, after which backreaction can be treated in the general-relativistic
context. Here we investigate the emergence of a classical regime out of the
quantum field evolution during the unstable phase. By studying the appearance
of classical correlations and loss of quantum coherence, we show that by the
time backreaction becomes important the system already behaves classically.
Consequently, the gravity-induced instability leads naturally to initial
conditions for the eventual classical description of the backreaction. Our
results give support to previous analyses which treat classically the
instability of scalar fields in the spacetime of relativistic stars, regardless
whether the instability is triggered by classical or quantum perturbations.Comment: 16 pages. Minor changes to match the published versio
Review of Contact and Dynamic Phenomena in Cold Roll Forming
This review reflects the state of the art in study of contact and dynamic phenomena occurring in cold roll forming. The importance of taking these phenomena into account is determined by significant machine time and tooling costs spent on worn out forming rolls replacement and equipment adjustment in cold roll forming. Predictive modelling of the tool wear caused by contact and dynamic phenomena can reduce the production losses in this technological process
Gravity-induced vacuum dominance
It has been widely believed that, except in very extreme situations, the
influence of gravity on quantum fields should amount to just small,
sub-dominant contributions. This view seemed to be endorsed by the seminal
results obtained over the last decades in the context of renormalization of
quantum fields in curved spacetimes. Here, however, we argue that this belief
is false by showing that there exist well-behaved spacetime evolutions where
the vacuum energy density of free quantum fields is forced, by the very same
background spacetime, to become dominant over any classical energy-density
component. This semiclassical gravity effect finds its roots in the infrared
behavior of fields on curved spacetimes. By estimating the time scale for the
vacuum energy density to become dominant, and therefore for backreaction on the
background spacetime to become important, we argue that this vacuum dominance
may bear unexpected astrophysical and cosmological implications.Comment: To appear in Phys. Rev. Lett
The Consequences of Quotas: Assessing the Effect of Varied Gender Quotas on Legislator Experience in the European Parliament
Copyright © The Women and Politics Research Section of the American Political Science Association 2019. This article explores the consequences of quotas on the level of diversity observed in legislators' professional and political experience. We examine how party system and electoral system features that are meant to favor female representation, such as gender quotas for candidate selection or placement mandates on electoral lists, affect the composition of legislatures by altering the mix of professional and political qualifications held by its members. Using data collected for all legislators initially seated to the current session of the European Parliament, one of the largest and most diverse democratically elected legislatures in the world, we find that quotas eliminate gendered differences in experience within the institution, particularly when used in conjunction with placement mandates that ensure female candidates are featured on electoral lists in viable positions. Electoral institutions can generally help to "level the playing field" between the backgrounds of men and women in elected office while increasing the presence of desirable qualities among European Parliament representatives of both genders
Awaking the vacuum in relativistic stars
Void of any inherent structure in classical physics, the vacuum has revealed
to be incredibly crowded with all sorts of processes in relativistic quantum
physics. Yet, its direct effects are usually so subtle that its structure
remains almost as evasive as in classical physics. Here, in contrast, we report
on the discovery of a novel effect according to which the vacuum is compelled
to play an unexpected central role in an astrophysical context. We show that
the formation of relativistic stars may lead the vacuum energy density of a
quantum field to an exponential growth. The vacuum-driven evolution which would
then follow may lead to unexpected implications for astrophysics, while the
observation of stable neutron-star configurations may teach us much on the
field content of our Universe.Comment: To appear in Phys. Rev. Let
BOSS-LDG: A Novel Computational Framework that Brings Together Blue Waters, Open Science Grid, Shifter and the LIGO Data Grid to Accelerate Gravitational Wave Discovery
We present a novel computational framework that connects Blue Waters, the
NSF-supported, leadership-class supercomputer operated by NCSA, to the Laser
Interferometer Gravitational-Wave Observatory (LIGO) Data Grid via Open Science
Grid technology. To enable this computational infrastructure, we configured,
for the first time, a LIGO Data Grid Tier-1 Center that can submit
heterogeneous LIGO workflows using Open Science Grid facilities. In order to
enable a seamless connection between the LIGO Data Grid and Blue Waters via
Open Science Grid, we utilize Shifter to containerize LIGO's workflow software.
This work represents the first time Open Science Grid, Shifter, and Blue Waters
are unified to tackle a scientific problem and, in particular, it is the first
time a framework of this nature is used in the context of large scale
gravitational wave data analysis. This new framework has been used in the last
several weeks of LIGO's second discovery campaign to run the most
computationally demanding gravitational wave search workflows on Blue Waters,
and accelerate discovery in the emergent field of gravitational wave
astrophysics. We discuss the implications of this novel framework for a wider
ecosystem of Higher Performance Computing users.Comment: 10 pages, 10 figures. Accepted as a Full Research Paper to the 13th
IEEE International Conference on eScienc
Recommended from our members
Spring 1974
Is it Really Herbicide Injury? (page 3) Replenishing Our Drinking Water Supply: A Major Step Forward (5) Nitrogen Supplies are Going to be Tight (9) Effect of Porous Rootzone Materials Underlined with Plastic on the Growth of Creeping Betgrass (11) Turf Conference Program (12) Fertilizer: Have Rates Peaked? (21) University of Massachusetts Turfgrass Research Fund (24
Bounding biomass in the Fisher equation
The FKPP equation with a variable growth rate and advection by an
incompressible velocity field is considered as a model for plankton dispersed
by ocean currents. If the average growth rate is negative then the model has a
survival-extinction transition; the location of this transition in the
parameter space is constrained using variational arguments and delimited by
simulations. The statistical steady state reached when the system is in the
survival region of parameter space is characterized by integral constraints and
upper and lower bounds on the biomass and productivity that follow from
variational arguments and direct inequalities. In the limit of
zero-decorrelation time the velocity field is shown to act as Fickian diffusion
with an eddy diffusivity much larger than the molecular diffusivity and this
allows a one-dimensional model to predict the biomass, productivity and
extinction transitions. All results are illustrated with a simple growth and
stirring model.Comment: 32 Pages, 13 Figure
- …