341 research outputs found

    Mark 14:1-11: exegesis case study

    Get PDF
    Mark 14-1

    The Fiscal Operations of Government

    Get PDF

    Utility functions predict variance and skewness risk preferences in monkeys.

    Get PDF
    Utility is the fundamental variable thought to underlie economic choices. In particular, utility functions are believed to reflect preferences toward risk, a key decision variable in many real-life situations. To assess the validity of utility representations, it is therefore important to examine risk preferences. In turn, this approach requires formal definitions of risk. A standard approach is to focus on the variance of reward distributions (variance-risk). In this study, we also examined a form of risk related to the skewness of reward distributions (skewness-risk). Thus, we tested the extent to which empirically derived utility functions predicted preferences for variance-risk and skewness-risk in macaques. The expected utilities calculated for various symmetrical and skewed gambles served to define formally the direction of stochastic dominance between gambles. In direct choices, the animals' preferences followed both second-order (variance) and third-order (skewness) stochastic dominance. Specifically, for gambles with different variance but identical expected values (EVs), the monkeys preferred high-variance gambles at low EVs and low-variance gambles at high EVs; in gambles with different skewness but identical EVs and variances, the animals preferred positively over symmetrical and negatively skewed gambles in a strongly transitive fashion. Thus, the utility functions predicted the animals' preferences for variance-risk and skewness-risk. Using these well-defined forms of risk, this study shows that monkeys' choices conform to the internal reward valuations suggested by their utility functions. This result implies a representation of utility in monkeys that accounts for both variance-risk and skewness-risk preferences

    Dopamine neurons learn relative chosen value from probabilistic rewards.

    Get PDF
    Economic theories posit reward probability as one of the factors defining reward value. Individuals learn the value of cues that predict probabilistic rewards from experienced reward frequencies. Building on the notion that responses of dopamine neurons increase with reward probability and expected value, we asked how dopamine neurons in monkeys acquire this value signal that may represent an economic decision variable. We found in a Pavlovian learning task that reward probability-dependent value signals arose from experienced reward frequencies. We then assessed neuronal response acquisition during choices among probabilistic rewards. Here, dopamine responses became sensitive to the value of both chosen and unchosen options. Both experiments showed also the novelty responses of dopamine neurones that decreased as learning advanced. These results show that dopamine neurons acquire predictive value signals from the frequency of experienced rewards. This flexible and fast signal reflects a specific decision variable and could update neuronal decision mechanisms

    Personal Counseling in Academic Programs with Counselor Trainees

    Get PDF
    Counseling programs are responsible for harm caused by their counselor trainees. This study examined the effect of participating in personal counseling on basic clinical skills using the Counseling Self-Estimate Inventory. This article discusses this study’s inconclusive results and implications for the development of counselors and counseling programs

    Personal Counseling in Academic Programs with Counselor Trainees

    Get PDF
    Counseling programs are responsible for harm caused by their counselor trainees. This study examined the effect of participating in personal counseling on basic clinical skills using the Counseling Self-Estimate Inventory. This article discusses this study’s inconclusive results and implications for the development of counselors and counseling programs

    Government-Industry Cooperative Fisheries Research in the North Pacific under the MSFCMA

    Get PDF
    The National Marine Fisheries Service’s Alaska Fisheries Science Center (AFSC) has a long and successful history of conducting research in cooperation with the fishing industry. Many of the AFSC’s annual resource assessment surveys are carried out aboard chartered commercial vessels and the skill and experience of captains and crew are integral to the success of this work. Fishing companies have been contracted to provide vessels and expertise for many different types of research, including testing and evaluation of survey and commercial fishing gear and development of improved methods for estimating commercial catch quantity and composition. AFSC scientists have also participated in a number of industry-initiated research projects including development of selective fishing gears for bycatch reduction and evaluating and improving observer catch composition sampling. In this paper, we describe the legal and regulatory provisions for these types of cooperative work and present examples to illustrate the process and identify the requirements for successful cooperative research

    Economic choices reveal probability distortion in macaque monkeys.

    Get PDF
    Economic choices are largely determined by two principal elements, reward value (utility) and probability. Although nonlinear utility functions have been acknowledged for centuries, nonlinear probability weighting (probability distortion) was only recently recognized as a ubiquitous aspect of real-world choice behavior. Even when outcome probabilities are known and acknowledged, human decision makers often overweight low probability outcomes and underweight high probability outcomes. Whereas recent studies measured utility functions and their corresponding neural correlates in monkeys, it is not known whether monkeys distort probability in a manner similar to humans. Therefore, we investigated economic choices in macaque monkeys for evidence of probability distortion. We trained two monkeys to predict reward from probabilistic gambles with constant outcome values (0.5 ml or nothing). The probability of winning was conveyed using explicit visual cues (sector stimuli). Choices between the gambles revealed that the monkeys used the explicit probability information to make meaningful decisions. Using these cues, we measured probability distortion from choices between the gambles and safe rewards. Parametric modeling of the choices revealed classic probability weighting functions with inverted-S shape. Therefore, the animals overweighted low probability rewards and underweighted high probability rewards. Empirical investigation of the behavior verified that the choices were best explained by a combination of nonlinear value and nonlinear probability distortion. Together, these results suggest that probability distortion may reflect evolutionarily preserved neuronal processing.This work was supported by the Wellcome Trust, European Research Council (ERC) and Caltech Conte Center.This is the final version of the article. It was first published by the Society for Neuroscience at http://www.jneurosci.org/content/35/7/3146.ful

    Manipulating and Understanding the Cultured Neuronal Network through Conducting Polymers

    Get PDF
    Conducting polymers are class of polymer that can be synthesized directly on conductive substrates and incorporate various functional molecules into it. Its conductivity and customizability make it an ideal interface material for neuronal network research. In the first phase of this thesis, the incorporation of laminin fragments into conducting polymer films is investigated. The laminin fragments are shown to produce low impedance surfaces for neuronal recording. Furthermore, it is shown that the incorporated laminin fragments promote the adhesion of neurons to the surface. These results could provide a means for promoting a stable interface for chronic recording devices.In the second phase of this thesis, In vitro multielectrode arrays provide a framework for studying polypyrrole-mediated controlled release of neurochemicals from microelectrodes, and neuronal network dynamics in a controlled setting. We have developed a technique to achieve transient and local inhibition of synaptic transmission in cultured networks. Conducting polymer films containing the glutamate receptor antagonist CNQX are synthesized directly on the microelectrodes in the recording array. Release of CNQX is achieved through a brief electrical pulse. Through single cell patch-clamp recording, the effectiveness of CNQX release on inhibiting excitatory post-synaptic currents (EPSC) is characterized as a function of distance and time from the releasing electrode, and evidence is shown supporting a diffusion-mediated process following release. At the network level, simultaneous patch-clamp and extracellular recordings are used to characterize stimulus-evoked responses from the network. Cross correlation and a model-based variable clustering technique identify functional connectivity in a neuronal network response to electrical stimuli. Use of the controlled release of CNQX in conjunction with these techniques will allow us to examine the functional clustering of neurons in response to a given stimulation, and how a functional cluster is affected by transient, local inhibition in the network

    Components and characteristics of the dopamine reward utility signal.

    Get PDF
    Rewards are defined by their behavioral functions in learning (positive reinforcement), approach behavior, economic choices, and emotions. Dopamine neurons respond to rewards with two components, similar to higher order sensory and cognitive neurons. The initial, rapid, unselective dopamine detection component reports all salient environmental events irrespective of their reward association. It is highly sensitive to factors related to reward and thus detects a maximal number of potential rewards. It also senses aversive stimuli but reports their physical impact rather than their aversiveness. The second response component processes reward value accurately and starts early enough to prevent confusion with unrewarded stimuli and objects. It codes reward value as a numeric, quantitative utility prediction error, consistent with formal concepts of economic decision theory. Thus, the dopamine reward signal is fast, highly sensitive and appropriate for driving and updating economic decisions.Grant sponsor: the Wellcome Trust; Grant sponsor: the European Research Council (ERC); Grant sponsor: the National Institutes of Health Conte Center at Caltech.This is the accepted version. The final version is available via http://onlinelibrary.wiley.com/doi/10.1002/cne.23880/abstract
    corecore