57 research outputs found

    Irreversible transformation of ferromagnetic ordered stripe domains in single-shot IR pump - resonant X-ray scattering probe experiments

    Full text link
    The evolution of a magnetic domain structure upon excitation by an intense, femtosecond Infra-Red (IR) laser pulse has been investigated using single-shot based time-resolved resonant X-ray scattering at the X-ray Free Electron laser LCLS. A well-ordered stripe domain pattern as present in a thin CoPd alloy film has been used as prototype magnetic domain structure for this study. The fluence of the IR laser pump pulse was sufficient to lead to an almost complete quenching of the magnetization within the ultrafast demagnetization process taking place within the first few hundreds of femtoseconds following the IR laser pump pulse excitation. On longer time scales this excitation gave rise to subsequent irreversible transformations of the magnetic domain structure. Under our specific experimental conditions, it took about 2 nanoseconds before the magnetization started to recover. After about 5 nanoseconds the previously ordered stripe domain structure had evolved into a disordered labyrinth domain structure. Surprisingly, we observe after about 7 nanoseconds the occurrence of a partially ordered stripe domain structure reoriented into a novel direction. It is this domain structure in which the sample's magnetization stabilizes as revealed by scattering patterns recorded long after the initial pump-probe cycle. Using micro-magnetic simulations we can explain this observation based on changes of the magnetic anisotropy going along with heat dissipation in the film.Comment: 16 pages, 6 figure

    Orbital dynamics during an ultrafast insulator to metal transition

    Full text link
    Phase transitions driven by ultrashort laser pulses have attracted interest both for understanding the fundamental physics of phase transitions and for potential new data storage or device applications. In many cases these transitions involve transient states that are different from those seen in equilibrium. To understand the microscopic properties of these states, it is useful to develop elementally selective probing techniques that operate in the time domain. Here we show fs-time-resolved measurements of V Ledge Resonant Inelastic X-Ray Scattering (RIXS) from the insulating phase of the Mott- Hubbard material V2O3 after ultrafast laser excitation. The probed orbital excitations within the d-shell of the V ion show a sub-ps time response, which evolve at later times to a state that appears electronically indistinguishable from the high-temperature metallic state. Our results demonstrate the potential for RIXS spectroscopy to study the ultrafast orbital dynamics in strongly correlated materials.Comment: 12 pages, 4 figure

    Ultrafast domain dilation induced by optical pumping in ferromagnetic CoFe/Ni multilayers

    Full text link
    Ultrafast optical pumping of systems with spatially nonuniform magnetic textures is known to cause far-from-equilibrium spin transport effects, such as the broadening of domain-walls. Here, we study the dynamics of labyrinth domain networks in ferromagnetic CoFe/Ni multilayers subject to a femtosecond optical pump and find an ultrafast domain dilation by 6% within 1.6 ps. This surprising result is based on the unambiguous determination of a harmonically-related shift of ultrafast magnetic X-ray diffraction for the first- and third-order rings. Domain dilation is plausible from conservation of momentum arguments, whereby inelastic scattering from a hot, quasi-ballistic, radial current transfers momentum to the magnetic domains. Our results suggest a potentially rich variety of unexpected physical phenomena associated with far-from-equilibrium inelastic electron-magnon scattering processes in the presence of spin textures

    The Time-resolved Atomic, Molecular and Optical Science Instrument at the Linac Coherent Light Source

    Full text link
    The newly constructed Time-resolved atomic, Molecular and Optical science instrument (TMO), is configured to take full advantage of both linear accelerators at SLAC National Accelerator Laboratory, the copper accelerator operating at a repetition rate of 120 Hz providing high per pulse energy, as well as the superconducting accelerator operating at a repetition rate of about 1 MHz providing high average intensity. Both accelerators build a soft X-ray free electron laser with the new variable gab undulator section. With this flexible light sources, TMO supports many experimental techniques not previously available at LCLS and will have two X-ray beam focus spots in line. Thereby, TMO supports Atomic, Molecular and Optical (AMO), strong-field and nonlinear science and will host a designated new dynamic reaction microscope with a sub-micron X-ray focus spot. The flexible instrument design is optimized for studying ultrafast electronic and molecular phenomena and can take full advantage of the sub-femtosecond soft X-ray pulse generation program

    Pulse energy measurement at the SXR instrument

    Get PDF
    A gas monitor detector was implemented and characterized at the Soft X-rayResearch (SXR) instrument to measure the average, absolute and pulse-resolved photon flux of the LCLS beam in the energy range between 280 and2000 eV. The detector is placed after the monochromator and addresses theneed to provide reliable absolute pulse energy as well as pulse-resolvedmeasurements for the various experiments at this instrument. This detectorprovides a reliable non-invasive measurement for determining flux levels on thesamples in the downstream experimental chamber and for optimizing signallevels of secondary detectors and for the essential need of data normalization.The design, integration into the instrument and operation are described, andexamples of its performance are given

    Photon shot-noise limited transient absorption soft X-ray spectroscopy at the European XFEL

    Get PDF
    Femtosecond transient soft X-ray Absorption Spectroscopy (XAS) is a very promising technique that can be employed at X-ray Free Electron Lasers (FELs) to investigate out-of-equilibrium dynamics for material and energy research. Here we present a dedicated setup for soft X-rays available at the Spectroscopy & Coherent Scattering (SCS) instrument at the European X-ray Free Electron Laser (EuXFEL). It consists of a beam-splitting off-axis zone plate (BOZ) used in transmission to create three copies of the incoming beam, which are used to measure the transmitted intensity through the excited and unexcited sample, as well as to monitor the incoming intensity. Since these three intensity signals are detected shot-by-shot and simultaneously, this setup allows normalized shot-by-shot analysis of the transmission. For photon detection, the DSSC imaging detector, which is capable of recording up to 800 images at 4.5 MHz frame rate during the FEL burst, is employed and allows approaching the photon shot-noise limit. We review the setup and its capabilities, as well as the online and offline analysis tools provided to users.Comment: 11 figure
    corecore