9 research outputs found

    Associations between dimensions of behaviour, personality traits, and mental-health during the COVID-19 pandemic in the United Kingdom.

    Get PDF
    The COVID-19 pandemic (including lockdown) is likely to have had profound but diverse implications for mental health and well-being, yet little is known about individual experiences of the pandemic (positive and negative) and how this relates to mental health and well-being, as well as other important contextual variables. Here, we analyse data sampled in a large-scale manner from 379,875 people in the United Kingdom (UK) during 2020 to identify population variables associated with mood and mental health during the COVID-19 pandemic, and to investigate self-perceived pandemic impact in relation to those variables. We report that while there are relatively small population-level differences in mood assessment scores pre- to peak-UK lockdown, the size of the differences is larger for people from specific groups, e.g. older adults and people with lower incomes. Multiple dimensions underlie peoples' perceptions, both positive and negative, of the pandemic's impact on daily life. These dimensions explain variance in mental health and can be statistically predicted from age, demographics, home and work circumstances, pre-existing conditions, maladaptive technology use and personality traits (e.g., compulsivity). We conclude that a holistic view, incorporating the broad range of relevant population factors, can better characterise people whose mental health is most at risk during the COVID-19 pandemic

    Cognitive deficits in people who have recovered from COVID-19.

    Get PDF
    BACKGROUND: There is growing concern about possible cognitive consequences of COVID-19, with reports of 'Long COVID' symptoms persisting into the chronic phase and case studies revealing neurological problems in severely affected patients. However, there is little information regarding the nature and broader prevalence of cognitive problems post-infection or across the full spread of disease severity. METHODS: We sought to confirm whether there was an association between cross-sectional cognitive performance data from 81,337 participants who between January and December 2020 undertook a clinically validated web-optimized assessment as part of the Great British Intelligence Test, and questionnaire items capturing self-report of suspected and confirmed COVID-19 infection and respiratory symptoms. FINDINGS: People who had recovered from COVID-19, including those no longer reporting symptoms, exhibited significant cognitive deficits versus controls when controlling for age, gender, education level, income, racial-ethnic group, pre-existing medical disorders, tiredness, depression and anxiety. The deficits were of substantial effect size for people who had been hospitalised (N = 192), but also for non-hospitalised cases who had biological confirmation of COVID-19 infection (N = 326). Analysing markers of premorbid intelligence did not support these differences being present prior to infection. Finer grained analysis of performance across sub-tests supported the hypothesis that COVID-19 has a multi-domain impact on human cognition. INTERPRETATION: Interpretation. These results accord with reports of 'Long Covid' cognitive symptoms that persist into the early-chronic phase. They should act as a clarion call for further research with longitudinal and neuroimaging cohorts to plot recovery trajectories and identify the biological basis of cognitive deficits in SARS-COV-2 survivors. FUNDING: Funding. AH is supported by the UK Dementia Research Institute Care Research and Technology Centre and Biomedical Research Centre at Imperial College London. WT is supported by the EPSRC Centre for Doctoral Training in Neurotechnology. SRC is funded by a Wellcome Trust Clinical Fellowship 110,049/Z/15/Z. JMB is supported by Medical Research Council (MR/N013700/1). MAM, SCRW and PJH are, in part, supported by the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London

    Cognition and lifeguard detection performance

    Get PDF
    Two experiments aimed to determine whether working memory capacity (WMC) and high-order executive functions predict drown detection performance and maintenance under heightened task demands. Experiment 1 (n = 111) found a positive correlation between enhanced performance scores and higher WMC, while executive function showed no comparable association. Experiment 2 (n = 28) individuals with elevated WMC demonstrated an ability to detect a greater number of drowning events over an extended period overall, relative to their lower scoring counterparts. However, this heightened capacity did not necessarily prevent the presence of vigilance decrement, but enabled lifeguards to perform more effectively under conditions of increased bather numbers. Our findings highlight that lifeguards have a measurable underlying process that may systematically discriminate lifeguards of varying degrees of experience and detection performance. This offers a new avenue for future lifeguarding research

    The effects of COVID-19 on cognitive performance in a community-based cohort: a COVID symptom study biobank prospective cohort study

    Get PDF
    BACKGROUND: Cognitive impairment has been reported after many types of infection, including SARS-CoV-2. Whether deficits following SARS-CoV-2 improve over time is unclear. Studies to date have focused on hospitalised individuals with up to a year follow-up. The presence, magnitude, persistence and correlations of effects in community-based cases remain relatively unexplored. METHODS: Cognitive performance (working memory, attention, reasoning, motor control) was assessed in a prospective cohort study of participants from the United Kingdom COVID Symptom Study Biobank between July 12, 2021 and August 27, 2021 (Round 1), and between April 28, 2022 and June 21, 2022 (Round 2). Participants, recruited from the COVID Symptom Study smartphone app, comprised individuals with and without SARS-CoV-2 infection and varying symptom duration. Effects of COVID-19 exposures on cognitive accuracy and reaction time scores were estimated using multivariable ordinary least squares linear regression models weighted for inverse probability of participation, adjusting for potential confounders and mediators. The role of ongoing symptoms after COVID-19 infection was examined stratifying for self-perceived recovery. Longitudinal analysis assessed change in cognitive performance between rounds. FINDINGS: 3335 individuals completed Round 1, of whom 1768 also completed Round 2. At Round 1, individuals with previous positive SARS-CoV-2 tests had lower cognitive accuracy (N = 1737, β = −0.14 standard deviations, SDs, 95% confidence intervals, CI: −0.21, −0.07) than negative controls. Deficits were largest for positive individuals with ≥12 weeks of symptoms (N = 495, β = −0.22 SDs, 95% CI: −0.35, −0.09). Effects were comparable to hospital presentation during illness (N = 281, β = −0.31 SDs, 95% CI: −0.44, −0.18), and 10 years age difference (60–70 years vs. 50–60 years, β = −0.21 SDs, 95% CI: −0.30, −0.13) in the whole study population. Stratification by self-reported recovery revealed that deficits were only detectable in SARS-CoV-2 positive individuals who did not feel recovered from COVID-19, whereas individuals who reported full recovery showed no deficits. Longitudinal analysis showed no evidence of cognitive change over time, suggesting that cognitive deficits for affected individuals persisted at almost 2 years since initial infection. INTERPRETATION: Cognitive deficits following SARS-CoV-2 infection were detectable nearly two years post infection, and largest for individuals with longer symptom durations, ongoing symptoms, and/or more severe infection. However, no such deficits were detected in individuals who reported full recovery from COVID-19. Further work is needed to monitor and develop understanding of recovery mechanisms for those with ongoing symptoms. FUNDING: Chronic Disease Research Foundation, Wellcome Trust, National Institute for Health and Care Research, Medical Research Council, British Heart Foundation, Alzheimer's Society, European Union, COVID-19 Driver Relief Fund, French National Research Agency

    Post-traumatic stress disorder symptoms in COVID-19 survivors: Online population survey

    No full text
    This study examined post-traumatic stress disorder (PTSD) symptoms in 13 049 survivors of suspected or confirmed COVID-19, from the UK general population, as a function of severity and hospital admission status. Compared with mild COVID-19, significantly elevated rates of PTSD symptoms were identified in those requiring medical support at home (effect size 0.178 s.d., P = 0.0316), those requiring hospital admission without ventilation (effect size 0.234 s.d., P = 0.0064) and those requiring hospital admission with ventilator support (effect size 0.454 s.d., P &lt; 0.001). Intrusive images were the most prominent elevated symptom. Adequate psychiatric provision for such individuals will be of paramount importance. </p

    Measuring compulsivity as a self-reported multidimensional transdiagnostic construct: large-Scale (N=182,000) validation of the Cambridge–Chicago Compulsivity Trait Scale

    No full text
    Compulsivity has potential transdiagnostic relevance to a range of psychiatric disorders, but it has not been well-characterized and there are few existing measures available for measuring the construct across clinical and nonclinical samples that have been validated at large population scale. We aimed to characterize the multidimensional latent structure of self-reported compulsivity in a population-based sample of British children and adults (N = 182,145) using the Cambridge–Chicago Compulsivity Trait Scale (CHI-T). Exploratory structural equation modeling provided evidence for a correlated two-factor model consisting of (a) Perfectionism and (b) Reward Drive dimensions. Evidence was obtained for discriminant validity in relation to the big five personality dimensions and acceptable test–retest reliability. The CHI-T, here validated at extremely large scale, is suitable for use in studies seeking to understand the correlates and basis of compulsivity in clinical and nonclinical participants. We provide extensive normative data to facilitate interpretation in future studies.</p

    The effects of COVID-19 on cognitive performance in a community-based cohort: a COVID symptom study biobank prospective cohort studyResearch in context

    Get PDF
    Summary: Background: Cognitive impairment has been reported after many types of infection, including SARS-CoV-2. Whether deficits following SARS-CoV-2 improve over time is unclear. Studies to date have focused on hospitalised individuals with up to a year follow-up. The presence, magnitude, persistence and correlations of effects in community-based cases remain relatively unexplored. Methods: Cognitive performance (working memory, attention, reasoning, motor control) was assessed in a prospective cohort study of participants from the United Kingdom COVID Symptom Study Biobank between July 12, 2021 and August 27, 2021 (Round 1), and between April 28, 2022 and June 21, 2022 (Round 2). Participants, recruited from the COVID Symptom Study smartphone app, comprised individuals with and without SARS-CoV-2 infection and varying symptom duration. Effects of COVID-19 exposures on cognitive accuracy and reaction time scores were estimated using multivariable ordinary least squares linear regression models weighted for inverse probability of participation, adjusting for potential confounders and mediators. The role of ongoing symptoms after COVID-19 infection was examined stratifying for self-perceived recovery. Longitudinal analysis assessed change in cognitive performance between rounds. Findings: 3335 individuals completed Round 1, of whom 1768 also completed Round 2. At Round 1, individuals with previous positive SARS-CoV-2 tests had lower cognitive accuracy (N = 1737, β = −0.14 standard deviations, SDs, 95% confidence intervals, CI: −0.21, −0.07) than negative controls. Deficits were largest for positive individuals with ≥12 weeks of symptoms (N = 495, β = −0.22 SDs, 95% CI: −0.35, −0.09). Effects were comparable to hospital presentation during illness (N = 281, β = −0.31 SDs, 95% CI: −0.44, −0.18), and 10 years age difference (60–70 years vs. 50–60 years, β = −0.21 SDs, 95% CI: −0.30, −0.13) in the whole study population. Stratification by self-reported recovery revealed that deficits were only detectable in SARS-CoV-2 positive individuals who did not feel recovered from COVID-19, whereas individuals who reported full recovery showed no deficits. Longitudinal analysis showed no evidence of cognitive change over time, suggesting that cognitive deficits for affected individuals persisted at almost 2 years since initial infection. Interpretation: Cognitive deficits following SARS-CoV-2 infection were detectable nearly two years post infection, and largest for individuals with longer symptom durations, ongoing symptoms, and/or more severe infection. However, no such deficits were detected in individuals who reported full recovery from COVID-19. Further work is needed to monitor and develop understanding of recovery mechanisms for those with ongoing symptoms. Funding: Chronic Disease Research Foundation, Wellcome Trust, National Institute for Health and Care Research, Medical Research Council, British Heart Foundation, Alzheimer's Society, European Union, COVID-19 Driver Relief Fund, French National Research Agency

    Computerised cognitive assessment in patients with traumatic brain injury: an observational study of feasibility and sensitivity relative to established clinical scalesResearch in context

    Get PDF
    Summary: Background: Online technology could potentially revolutionise how patients are cognitively assessed and monitored. However, it remains unclear whether assessments conducted remotely can match established pen-and-paper neuropsychological tests in terms of sensitivity and specificity. Methods: This observational study aimed to optimise an online cognitive assessment for use in traumatic brain injury (TBI) clinics. The tertiary referral clinic in which this tool has been clinically implemented typically sees patients a minimum of 6 months post-injury in the chronic phase. Between March and August 2019, we conducted a cross-group, cross-device and factor analyses at the St. Mary’s Hospital TBI clinic and major trauma wards at Imperial College NHS trust and St. George’s Hospital in London (UK), to identify a battery of tasks that assess aspects of cognition affected by TBI. Between September 2019 and February 2020, we evaluated the online battery against standard face-to-face neuropsychological tests at the Imperial College London research centre. Canonical Correlation Analysis (CCA) determined the shared variance between the online battery and standard neuropsychological tests. Finally, between October 2020 and December 2021, the tests were integrated into a framework that automatically generates a results report where patients’ performance is compared to a large normative dataset. We piloted this as a practical tool to be used under supervised and unsupervised conditions at the St. Mary’s Hospital TBI clinic in London (UK). Findings: The online assessment discriminated processing-speed, visual-attention, working-memory, and executive-function deficits in TBI. CCA identified two significant modes indicating shared variance with standard neuropsychological tests (r = 0.86, p < 0.001 and r = 0.81, p = 0.02). Sensitivity to cognitive deficits after TBI was evident in the TBI clinic setting under supervised and unsupervised conditions (F (15,555) = 3.99; p < 0.001). Interpretation: Online cognitive assessment of TBI patients is feasible, sensitive, and efficient. When combined with normative sociodemographic models and autogenerated reports, it has the potential to transform cognitive assessment in the healthcare setting. Funding: This work was funded by a National Institute for Health Research (NIHR) Invention for Innovation (i4i) grant awarded to DJS and AH (II-LB-0715-20006)
    corecore