5 research outputs found

    Conservation Farming and Changing Climate: More Beneficial Than Conventional Methods for Degraded Ugandan Soils

    Get PDF
    The extent of land affected by degradation in Uganda ranges from 20% in relatively flat and vegetation-covered areas to 90% in the eastern and southwestern highlands. Land degradation has adversely affected smallholder agro-ecosystems including direct damage and loss of critical ecosystem services such as agricultural land/soil and biodiversity. This study evaluated the extent of bare grounds in Nakasongola, one of the districts in the Cattle Corridor of Uganda and the yield responses of maize (Zea mays) and common bean (Phaseolus vulgaris L.) to different tillage methods in the district. Bare ground was determined by a supervised multi-band satellite image classification using the Maximum Likelihood Classifier (MLC). Field trials on maize and bean grain yield responses to tillage practices used a randomized complete block design with three replications, evaluating conventional farmer practice (CFP); permanent planting basins (PPB); and rip lines, with or without fertilizer in maize and bean rotations. Bare ground coverage in the Nakasongola District was 187 km2 (11%) of the 1741 km2 of arable land due to extreme cases of soil compaction. All practices, whether conventional or the newly introduced conservation farming practices in combination with fertilizer increased bean and maize grain yields, albeit with minimal statistical significance in some cases. The newly introduced conservation farming tillage practices increased the bean grain yield relative to conventional practices by 41% in PPBs and 43% in rip lines. In maize, the newly introduced conservation farming tillage practices increased the grain yield by 78% on average, relative to conventional practices. Apparently, conservation farming tillage methods proved beneficial relative to conventional methods on degraded soils, with the short-term benefit of increasing land productivity leading to better harvests and food security

    The association between low-level viraemia and subsequent viral non-suppression among people living with HIV/AIDS on antiretroviral therapy in Uganda.

    No full text
    BackgroundUganda's efforts to end the HIV epidemic by 2030 are threatened by the increasing number of PLHIV with low-level viraemia (LLV). We conducted a study to determine the prevalence of LLV and the association between LLV and subsequent viral non-suppression from 2016 to 2020 among PLHIV on ART in Uganda.MethodThis was a retrospective cohort study, using the national viral load (VL) program data from 2016 to 2020. LLV was defined as a VL result of at least 50 copies/ml, but less than 1,000 copies/ml. Multivariable logistic regression was used to determine the factors associated with LLV, and cox proportional hazards regression model was used to determine the association between LLV and viral non-suppression.ResultsA cohort of 17,783 PLHIV, of which 1,466 PLHIV (8.2%) had LLV and 16,317 (91.8%) had a non-detectable VL was retrospectively followed from 2016 to 2020. There were increasing numbers of PLHIV with LLV from 2.0% in 2016 to 8.6% in 2020; and LLV was associated with male sex, second line ART regimen and being of lower age. 32.5% of the PLHIV with LLV (476 out of 1,466 PLHIV) became non-suppressed, as compared to 7.7% of the PLHIV (1,254 out of 16,317 PLHIV) with a non-detectable viral load who became non-suppressed during the follow-up period. PLHIV with LLV had 4.1 times the hazard rate of developing viral non-suppression, as compared to PLHIV with a non-detectable VL (adjusted hazard ratio was 4.1, 95% CI: 3.7 to 4.7, p ConclusionOur study indicated that PLHIV with LLV increased from 2.0% in 2016 to 8.6% in 2020, and PLHIV with LLV had 4.1 times the hazard rate of developing viral non-suppression, as compared to PLHIV with a non-detectable VL. Hence the need to review the VL testing algorithm and also manage LLV in Uganda

    Conservation Farming and Changing Climate: More Beneficial than Conventional Methods for Degraded Ugandan Soils

    Get PDF
    The extent of land affected by degradation in Uganda ranges from 20% in relatively flat and vegetation-covered areas to 90% in the eastern and southwestern highlands. Land degradation has adversely affected smallholder agro-ecosystems including direct damage and loss of critical ecosystem services such as agricultural land/soil and biodiversity. This study evaluated the extent of bare grounds in Nakasongola, one of the districts in the Cattle Corridor of Uganda and the yield responses of maize (Zea mays) and common bean (Phaseolus vulgaris L.) to different tillage methods in the district. Bare ground was determined by a supervised multi-band satellite image classification using the Maximum Likelihood Classifier (MLC). Field trials on maize and bean grain yield responses to tillage practices used a randomized complete block design with three replications, evaluating conventional farmer practice (CFP); permanent planting basins (PPB); and rip lines, with or without fertilizer in maize and bean rotations. Bare ground coverage in the Nakasongola District was 187 km2 (11%) of the 1741 km2 of arable land due to extreme cases of soil compaction. All practices, whether conventional or the newly introduced conservation farming practices in combination with fertilizer increased bean and maize grain yields, albeit with minimal statistical significance in some cases. The newly introduced conservation farming tillage practices increased the bean grain yield relative to conventional practices by 41% in PPBs and 43% in rip lines. In maize, the newly introduced conservation farming tillage practices increased the grain yield by 78% on average, relative to conventional practices. Apparently, conservation farming tillage methods proved beneficial relative to conventional methods on degraded soils, with the short-term benefit of increasing land productivity leading to better harvests and food security
    corecore