620 research outputs found
Some Like It Hot: Linking Diffuse X-ray Luminosity, Baryonic Mass, and Star Formation Rate in Compact Groups of Galaxies
We present an analysis of the diffuse X-ray emission in 19 compact groups of
galaxies (CGs) observed with Chandra. The hottest, most X-ray luminous CGs
agree well with the galaxy cluster X-ray scaling relations in and
, even in CGs where the hot gas is associated with only the
brightest galaxy. Using Spitzer photometry, we compute stellar masses and
classify HCGs 19, 22, 40, and 42 and RSCGs 32, 44, and 86 as fossil groups
using a new definition for fossil systems that includes a broader range of
masses. We find that CGs with total stellar and HI masses
M are often X-ray luminous, while lower-mass CGs only sometimes exhibit
faint, localized X-ray emission. Additionally, we compare the diffuse X-ray
luminosity against both the total UV and 24 m star formation rates of each
CG and optical colors of the most massive galaxy in each of the CGs. The most
X-ray luminous CGs have the lowest star formation rates, likely because there
is no cold gas available for star formation, either because the majority of the
baryons in these CGs are in stars or the X-ray halo, or due to gas stripping
from the galaxies in CGs with hot halos. Finally, the optical colors that trace
recent star formation histories of the most massive group galaxies do not
correlate with the X-ray luminosities of the CGs, indicating that perhaps the
current state of the X-ray halos is independent of the recent history of
stellar mass assembly in the most massive galaxies.Comment: 20 pages, 7 figures, accepted for publication in Ap
What asteroseismology can do for exoplanets
We describe three useful applications of asteroseismology in the context of
exoplanet science: (1) the detailed characterisation of exoplanet host stars;
(2) the measurement of stellar inclinations; and (3) the determination of
orbital eccentricity from transit duration making use of asteroseismic stellar
densities. We do so using the example system Kepler-410 (Van Eylen et al.
2014). This is one of the brightest (V = 9.4) Kepler exoplanet host stars,
containing a small (2.8 Rearth) transiting planet in a long orbit (17.8 days),
and one or more additional non-transiting planets as indicated by transit
timing variations. The validation of Kepler-410 (KOI-42) was complicated due to
the presence of a companion star, and the planetary nature of the system was
confirmed after analyzing a Spitzer transit observation as well as ground-based
follow-up observations.Comment: 4 pages, Proceedings of the CoRoT Symposium 3 / Kepler KASC-7 joint
meeting, Toulouse, 7-11 July 2014. To be published by EPJ Web of Conference
GoMiner: a resource for biological interpretation of genomic and proteomic data
We have developed GoMiner, a program package that organizes lists of 'interesting' genes (for example, under- and overexpressed genes from a microarray experiment) for biological interpretation in the context of the Gene Ontology. GoMiner provides quantitative and statistical output files and two useful visualizations. The first is a tree-like structure analogous to that in the AmiGO browser and the second is a compact, dynamically interactive 'directed acyclic graph'. Genes displayed in GoMiner are linked to major public bioinformatics resources
Compound heterozygosity for lossĂą ofĂą function GARS variants results in a multisystem developmental syndrome that includes severe growth retardation
AminoacylĂą tRNA synthetases (ARSs) are ubiquitously expressed enzymes that ligate amino acids onto tRNA molecules. Genes encoding ARSs have been implicated in myriad dominant and recessive disease phenotypes. GlycylĂą tRNA synthetase (GARS) is a bifunctional ARS that charges tRNAGly in the cytoplasm and mitochondria. GARS variants have been associated with dominant CharcotĂą MarieĂą Tooth disease but have not been convincingly implicated in recessive phenotypes. Here, we describe a patient from the NIH Undiagnosed Diseases Program with a multisystem, developmental phenotype. WholeĂą exome sequence analysis revealed that the patient is compound heterozygous for one frameshift (p.Glu83Ilefs*6) and one missense (p.Arg310Gln) GARS variant. Using in vitro and in vivo functional studies, we show that both GARS variants cause a lossĂą ofĂą function effect: the frameshift variant results in depleted protein levels and the missense variant reduces GARS tRNA charging activity. In support of GARS variant pathogenicity, our patient shows striking phenotypic overlap with other patients having ARSĂą related recessive diseases, including features associated with variants in both cytoplasmic and mitochondrial ARSs; this observation is consistent with the essential function of GARS in both cellular locations. In summary, our clinical, genetic, and functional analyses expand the phenotypic spectrum associated with GARS variants.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138288/1/humu23287-sup-0001-text.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138288/2/humu23287.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138288/3/humu23287_am.pd
The C-Terminal Domain of the Arabinosyltransferase Mycobacterium tuberculosis EmbC Is a Lectin-Like Carbohydrate Binding Module
The D-arabinan-containing polymers arabinogalactan (AG) and lipoarabinomannan (LAM) are essential components of the unique cell envelope of the pathogen Mycobacterium tuberculosis. Biosynthesis of AG and LAM involves a series of membrane-embedded arabinofuranosyl (Araf) transferases whose structures are largely uncharacterised, despite the fact that several of them are pharmacological targets of ethambutol, a frontline drug in tuberculosis therapy. Herein, we present the crystal structure of the C-terminal hydrophilic domain of the ethambutol-sensitive Araf transferase M. tuberculosis EmbC, which is essential for LAM synthesis. The structure of the C-terminal domain of EmbC (EmbCCT) encompasses two sub-domains of different folds, of which subdomain II shows distinct similarity to lectin-like carbohydrate-binding modules (CBM). Co-crystallisation with a cell wall-derived di-arabinoside acceptor analogue and structural comparison with ligand-bound CBMs suggest that EmbCCT contains two separate carbohydrate binding sites, associated with subdomains I and II, respectively. Single-residue substitution of conserved tryptophan residues (Trp868, Trp985) at these respective sites inhibited EmbC-catalysed extension of LAM. The same substitutions differentially abrogated binding of di- and penta-arabinofuranoside acceptor analogues to EmbCCT, linking the loss of activity to compromised acceptor substrate binding, indicating the presence of two separate carbohydrate binding sites, and demonstrating that subdomain II indeed functions as a carbohydrate-binding module. This work provides the first step towards unravelling the structure and function of a GT-C-type glycosyltransferase that is essential in M. tuberculosis. Author Summary Top Tuberculosis (TB), an infectious disease caused by the bacillus Mycobacterium tuberculosis, burdens large swaths of the world population. Treatment of active TB typically requires administration of an antibiotic cocktail over several months that includes the drug ethambutol. This front line compound inhibits a set of arabinosyltransferase enzymes, called EmbA, EmbB and EmbC, which are critical for the synthesis of arabinan, a vital polysaccharide in the pathogen's unique cell envelope. How precisely ethambutol inhibits arabinosyltransferase activity is not clear, in part because structural information of its pharmacological targets has been elusive. Here, we report the high-resolution structure of the C-terminal domain of the ethambutol-target EmbC, a 390-amino acid fragment responsible for acceptor substrate recognition. Combining the X-ray crystallographic analysis with structural comparisons, site-directed mutagenesis, activity and ligand binding assays, we identified two regions in the C-terminal domain of EmbC that are capable of binding acceptor substrate mimics and are critical for activity of the full-length enzyme. Our results begin to define structure-function relationships in a family of structurally uncharacterised membrane-embedded glycosyltransferases, which are an important target for tuberculosis therapy
Discovery and characterization of small molecules that target the Ral GTPase
The Ras-like GTPases RalA and B are important drivers of tumor growth and metastasis. Chemicals that block Ral function would be valuable as research tools and for cancer therapeutics. Here, we used protein structure analysis and virtual screening to identify drug-like molecules that bind a site on the GDP-form of Ral. Compounds RBC6, RBC8 and RBC10 inhibited Ral binding to its effector RalBP1, Ral-mediated cell spreading in murine fibroblasts and anchorage-independent growth of human cancer cell lines. Binding of RBC8 derivative BQU57 to RalB was confirmed by isothermal titration calorimetry, surface plasma resonance and 15N-HSQC NMR. RBC8 and BQU57 show selectivity for Ral relative to Ras or Rho and inhibit xenograft tumor growth similar to depletion of Ral by siRNA. Our results show the utility of structure-based discovery for development of therapeutics for Ral-dependent cancers
Implementation of a Shared Data Repository and Common Data Dictionary for Fetal Alcohol Spectrum Disorders Research
Many previous attempts by fetal alcohol spectrum disorders researchers to compare data across multiple prospective and retrospective human studies have failed due to both structural differences in the collected data as well as difficulty in coming to agreement on the precise meaning of the terminology used to describe the collected data. Although some groups of researchers have an established track record of successfully integrating data, attempts to integrate data more broadly amongst different groups of researchers have generally faltered. Lack of tools to help researchers share and integrate data has also hampered data analysis. This situation has delayed improving diagnosis, intervention, and treatment before and after birth. We worked with various researchers and research programs in the Collaborative Initiative on Fetal Alcohol Spectrum Disorders (CI-FASD) to develop a set of common data dictionaries to describe the data to be collected, including definitions of terms and specification of allowable values. The resulting data dictionaries were the basis for creating a central data repository (CI-FASD Central Repository) and software tools to input and query data. Data entry restrictions ensure that only data which conform to the data dictionaries reach the CI-FASD Central Repository. The result is an effective system for centralized and unified management of the data collected and analyzed by the initiative, including a secure, long-term data repository. CI-FASD researchers are able to integrate and analyze data of different types, collected using multiple methods, and collected from multiple populations, and data are retained for future reuse in a secure, robust repository
A Symmetric Approach to Compilation and Decompilation
Just as specializing a source interpreter can achieve compilation from a source language to a target language, we observe that specializing a target interpreter can achieve compilation from the target language to the source language. In both cases, the key issue is the choice of whether to perform an evaluation or to emit code that represents this evaluation. We substantiate this observation by specializing two source interpreters and two target interpreters. We first consider a source language of arithmetic expressions and a target language for a stack machine, and then the lambda-calculus and the SECD-machine language. In each case, we prove that the target-to-source compiler is a left inverse of the source-to-target compiler, i.e., it is a decompiler. In the context of partial evaluation, compilation by source-interpreter specialization is classically referred to as a Futamura projection. By symmetry, it seems logical to refer to decompilation by target-interpreter specialization as a Futamura embedding
LSST: from Science Drivers to Reference Design and Anticipated Data Products
(Abridged) We describe here the most ambitious survey currently planned in
the optical, the Large Synoptic Survey Telescope (LSST). A vast array of
science will be enabled by a single wide-deep-fast sky survey, and LSST will
have unique survey capability in the faint time domain. The LSST design is
driven by four main science themes: probing dark energy and dark matter, taking
an inventory of the Solar System, exploring the transient optical sky, and
mapping the Milky Way. LSST will be a wide-field ground-based system sited at
Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m
effective) primary mirror, a 9.6 deg field of view, and a 3.2 Gigapixel
camera. The standard observing sequence will consist of pairs of 15-second
exposures in a given field, with two such visits in each pointing in a given
night. With these repeats, the LSST system is capable of imaging about 10,000
square degrees of sky in a single filter in three nights. The typical 5
point-source depth in a single visit in will be (AB). The
project is in the construction phase and will begin regular survey operations
by 2022. The survey area will be contained within 30,000 deg with
, and will be imaged multiple times in six bands, ,
covering the wavelength range 320--1050 nm. About 90\% of the observing time
will be devoted to a deep-wide-fast survey mode which will uniformly observe a
18,000 deg region about 800 times (summed over all six bands) during the
anticipated 10 years of operations, and yield a coadded map to . The
remaining 10\% of the observing time will be allocated to projects such as a
Very Deep and Fast time domain survey. The goal is to make LSST data products,
including a relational database of about 32 trillion observations of 40 billion
objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures
available from https://www.lsst.org/overvie
- âŠ