32 research outputs found

    Clinical Trials in Head Injury

    Full text link
    Traumatic brain injury (TBI) remains a major public health problem globally. In the United States the incidence of closed head injuries admitted to hospitals is conservatively estimated to be 200 per 100,000 population, and the incidence of penetrating head injury is estimated to be 12 per 100,000, the highest of any developed country in the world. This yields an approximate number of 500,000 new cases each year, a sizeable proportion of which demonstrate signficant long-term disabilities. Unfortunately, there is a paucity of proven therapies for this disease. For a variety of reasons, clinical trials for this condition have been difficult to design and perform. Despite promising pre-clinical data, most of the trials that have been performed in recent years have failed to demonstrate any significant improvement in outcomes. The reasons for these failures have not always been apparent and any insights gained were not always shared. It was therefore feared that we were running the risk of repeating our mistakes. Recognizing the importance of TBI, the National Institute of Neurological Disorders and Stroke (NINDS) sponsored a workshop that brought together experts from clinical, research, and pharmaceutical backgrounds. This workshop proved to be very informative and yielded many insights into previous and future TBI trials. This paper is an attempt to summarize the key points made at the workshop. It is hoped that these lessons will enhance the planning and design of future efforts in this important field of research.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63185/1/089771502753754037.pd

    Low-Dose Recombinant Tissue-Type Plasminogen Activator Enhances Clot Resolution in Brain Hemorrhage: The Intraventricular Hemorrhage Thrombolysis Trial

    No full text
    BACKGROUND AND PURPOSE: Patients with intracerebral hemorrhage (ICH) and intraventricular hemorrhage (IVH) have a reported mortality of 50–80%. We evaluated a clot lytic treatment strategy for these patients in terms of mortality, ventricular infection, and bleeding safety events and for its effect on the rate of intraventricular clot lysis. METHODS: 48 Patients were enrolled at 14 centers and randomized to treatment with 3mg recombinant tissue plasminogen activator (rt-PA) or placebo. Demographic characteristics, severity factors, safety outcomes (mortality, infection, bleeding), and clot resolution rates were compared in the two groups. RESULTS: Severity factors, including admission GCS, ICH volume, IVH volume and blood pressure, were evenly distributed, as were adverse events except for an increased frequency of respiratory system events in the placebo-treated group. Neither ICP nor Cerebral Perfusion pressure (CPP) differed substantially between treatment groups on presentation, with EVD closure, or during the active treatment phase. Frequency of death and ventriculitis was substantially lower than expected and bleeding events remained below the pre-specified threshold: mortality (18%, rt-PA; 23%, placebo); ventriculitis (8%, rt-PA; 9%, placebo); symptomatic bleeding (23%, rt-PA; 5% placebo, which approached statistical significance (p=0.1)). The median duration of dosing was 7.5 days for rt-PA and 12 days for placebo. There was a significant beneficial effect of rt-PA on rate of clot resolution CONCLUSIONS: Low-dose rt-PA for the treatment of ICH with IVH has an acceptable safety profile compared to placebo and prior historical controls. Data from a well-designed Phase III clinical trial, such as CLEAR III, will be needed to fully evaluate this treatment. CLINICAL TRIAL REGISTRATION INFORMATION: Participant enrollment began prior to July 1, 2005

    A Consensus-based Interpretation of the BEST TRIP ICP Trial.

    No full text
    Widely varying published and presented analyses of the BEST TRIP randomized controlled trial of intracranial pressure (ICP) monitoring have suggested denying trial generalizability, questioning the need for ICP monitoring in severe traumatic brain injury (sTBI), re-assessing current clinical approaches to monitored ICP, and initiating a general ICP-monitoring moratorium. In response to this dissonance, 23 clinically-active, international opinion leaders in acute-care sTBI management met to draft a consensus statement to interpret this study. A Delphi-method-based approach employed iterative pre-meeting polling to codify the groups general opinions, followed by an in-person meeting wherein individual statements were refined. Statements required an agreement threshold of > 70% by blinded voting for approval. Seven precisely-worded statements resulted, with agreement levels of 83-100%. These statements, which should be read in toto to properly reflect the group's consensus positions, conclude that this study: 1) studied protocols, not ICP-monitoring per se; 2) applies only to those protocols and specific study groups and should not be generalized to other treatment approaches or patient groups; 3) strongly calls for further research on ICP interpretation and use; 4) should be applied cautiously to regions with much different treatment milieu; 5) did not investigate the utility of treating monitored ICP in the specific patient group with established intracranial hypertension; 6) should not change the practice of those currently monitoring ICP; and 7) provided a protocol, used in non-monitored study patients, that should be considered when treating without ICP monitoring. Consideration of these statements can clarify study interpretation and avoid "collateral damage"
    corecore