811 research outputs found
Educating Lawyers: Preparation for the Profession of Law
Examines the unique aspects and limitations of legal education, as part of a series of reports from the foundation's Preparation for the Professions Program
A Pre-Protostellar Core in L1551. II. State of Dynamical and Chemical Evolution
Both analytic and numerical radiative transfer models applied to high
spectral resolution CS and N2H+ data give insight into the evolutionary state
of L1551 MC. This recently discovered pre-protostellar core in L1551 appears to
be in the early stages of dynamical evolution. Line-of-sight infall velocities
of >0.1km/s are needed in the outer regions of L1551 MC to adequately fit the
data. This translates to an accretion rate of ~ 1e-6 Msun/yr, uncertain to
within a factor of 5 owing to unknown geometry. The observed dynamics are not
due to spherically symmetric gravitational collapse and are not consistent with
the standard model of low-mass star formation. The widespread, fairly uniform
CS line asymmetries are more consistent with planar infall. There is modest
evidence for chemical depletion in the radial profiles of CS and C18O
suggesting that L1551 MC is also chemically young. The models are not very
sensitive to chemical evolution. L1551 MC lies within a quiescent region of
L1551 and is evidence for continued star formation in this evolved cloud.Comment: 27 pages, 7 figures, ApJ accepte
The characterization and role of aeolian deposition on water quality, McMurdo Dry Valleys, Antarctica
The connection of ecosystems by wind-driven transport of material has become a topic of increasing interest and importance. Less than 1% of dust transported worldwide is exported to the Southern Ocean and Antarctic cryosphere; however, aeolian transport on the Antarctic continent is predominantly locally derived from the abrasion of bedrock. The deposition of the aeolian material is integral to nutrient and solute dispersal in the Antarctic ecosystem. This is particularly true in the ice-free areas of Antarctica, such as the McMurdo Dry Valleys (MDV), where aeolian material deposited in the aquatic system is solubilized during the melt season. The material is predominantly locally-derived from the abrasion of bedrock. In this study, a two-step leaching experiment simulates the melt season and we quantify the flux of solutes and nutrients to the aquatic ecosystem. Soluble salts were removed from the aeolian material first during cold water leaching followed by an increase in carbonate and silicate dissolution during freeze–thaw. Major ion fluxes on glaciers and lakes are at least two orders of magnitude greater than nutrient fluxes. However, the fluxes derived from these experiments are less than the estimated flux from streams to lakes and probably represent minima. Aeolian redistribution of local soils is important because they are the only source of new solutes and nutrients to the aquatic ecosystem of the MDV
A Rac1-independent role for P-Rex1 in melanoblasts
No abstract available
Bioresorbable Film for the Prevention of Adhesion to the Anterior Spine After Anterolateral Discectomy
Background context The development of scar tissue and adhesions postoperatively is a natural consequence of healing but can be associated with medical complications and render reoperation difficult. Many biocompatible products have been evaluated as barriers or deterrents to adhesions. Purpose To evaluate the efficacy of a bioresorbable polylactide film as a barrier to adhesion formation after anterolateral discectomy. Study design Experimental study. Methods Seven, skeletally mature female sheep underwent a retroperitoneal approach to the anterolateral lumbar spine. A discectomy was performed at two levels with an intervening unoperated disc site. One site was treated with a polylactide film barrier (Hydrosorb Shield; MacroPore Biosurgery, San Diego, CA) affixed with tacks manufactured from the same material. The second site was left untreated. Treatment and control sites were randomly assigned. Postmortem analysis included scar tenacity scoring on five spines and histological evaluation on two spines. Results The application of the Hydrosorb film barrier allowed a definite dissection plane during scar tenacity scoring and there was a significant difference in the development of adhesions to the disc between the control and treated sites. Histological evaluation revealed evidence of barrier formation to scar tissue and no significant adverse inflammatory reactions. Conclusions Hydrosorb Shield appears to be an effective postoperative barrier to scar tissue adhesion after anterolateral discectomy. The use of polylactide tacks was beneficial to affix the barrier film in place. Safety issues associated with delayed healing or adverse response to the film or tacks were not observed. Hydrosorb film may be useful as an antiadhesion barrier facilitating dissection during surgical revision in anterior approaches to the spine. Further studies are indicated to evaluate the performance of the bioresorbable material as an antiadhesion barrier in techniques of spinal fusion and disc replacement
Antarctic streams as a potential source of iron for the Southern Ocean
Due to iron’s role in oceanic primary production, there has been great interest in quantifying the importance of Fe in regions where concentrations are very low and macronutrients, nitrate and phosphate, are available. Measurements of filterable (i.e., \u3c0.4 μm) Fe concentrations in streams from Taylor Valley, McMurdo Dry Valleys, Antarctica, suggest that coastal-zone stream Fe input to the Southern Ocean could potentially play an important role in primary production in nearshore regions. Filterable Fe (fFe) data from streams in the McMurdo Dry Valleys were used to represent glacier meltwater that flows through ice-free landscape with the potential of transporting Fe to the Antarctic coastal zone. Estimates of potential fFe flux to the Antarctic Peninsula region using our mean fFe concentration of 10.6 µg L–1 combined with an estimate of ice-free area for the Antarctic Peninsula result in an fFe flux of 1.2 × 107 g yr–1. Although small compared to iceberg and aeolian Fe fluxes, future stream input to the Southern Ocean could increase due to glacier retreat and melting, thus increasing the fFe flux from glacier meltwater streams
A Pre-Protostellar Core in L1551
Large field surveys of NH3, C2S, 13CO and C18O in the L1551 dark cloud have
revealed a prolate, pre-protostellar molecular core (L1551-MC) in a relatively
quiescent region to the northwest of the well-known IRS 5 source. The kinetic
temperature is measured to be 9K, the total mass is ~2Msun, and the average
particle density is 10^4-10^5 cm^(-3). L1551-MC is 2.25' x 1.11' in projection
oriented at a position angle of 133deg. The turbulent motions are on the order
of the sound speed in the medium and contain 4% of the gravitational energy,
E_{grav}, of the core. The angular momentum vector is projected along the major
axis of L1551-MC corresponding to a rotational energy of 2.5E-3(sin
i)^(-2)|E_{grav}|. The thermal energy constitutes about a third of |E_{grav}|
and the virial mass is approximately equal to the total mass. L1551-MC is
gravitationally bound and in the absence of strong, ~160 microgauss, magnetic
fields will likely contract on a ~0.3 Myr time scale. The line profiles of many
molecular species suggest that the cold quiescent interior is surrounded by a
dynamic, perhaps infalling envelope which is embedded within the ambient
molecular gas of L1551.Comment: 27 pages, 7 figures, ApJ accepte
- …