4,619 research outputs found
Recommended from our members
One-micron spectroscopic studies of accretion and outflow in T tauri stars.
High-resolution spectroscopy of classical T Tauri stars (CTTS) at one micron yields new insight into the interaction of accretion disks, outflowing gas, and the central stars. Eighty-one 0.95–1.12 μm spectra of 38 CTTS were obtained with NIRSPEC on Keck II (R = 25, 000) between 2001 and 2007. They were reduced with a modified version of Redspec that features an improved interface developed by the author to remove intrinsic spectral features from atmospheric calibrator stars. Profiles of the one-micron neutral helium line (λ10830) are powerful probes of the kinematics and geometry of infalling and outflowing gas within the innermost ∼ 10 R∗ of the accreting systems. Subcontinuum blueshifted absorption components, tracing outflow, are found in about 75% of the CTTS and indicate a dual origin for the winds that power outflows observed farther from the star. Modeling of blue absorption and emission indicates that heavily accreting sources, with one-micron veilings rY \u3e 0.5, are dominated by stellar winds, while lightly accreting sources with lower rY show evidence for a mixture of stellar winds and disk winds. Subcontinuum redshifted absorption components, tracing infall, are found in about 50% of the CTTS, almost never when r Y \u3e 0.5, and indicate accretion along magnetic field lines that connect the star to the disk. Modeling of red absorption indicates that in about half of the objects with such features, the absorption morphology is consistent with previously modeled flows, but in the remaining half, consisting of stars with rY ≤ 0.1, wider and more dilute flows are required than have previously been proposed. Over the entire sample, Paγ morphologies are roughly consistent with their expected formation in a funnel flow, but trends with veiling suggest that accretion shocks and winds can also contribute to the profiles. Finally, ratios of r Y to optical veilings are on average higher than the expectations of existing models, indicating the possibility of additional sources of excess emission at 1 μm. The evidence for two types of inner wind and an accretion flow geometry that depends on accretion rate suggests that the means of mass and angular momentum transport in CTTS systems are more diverse than previously realized
Estimating Optimal Landfill Sizes and Locations in North Dakota
Resource /Energy Economics and Policy, Land Economics/Use,
Comparative analysis of hepatitis C virus phylogenies from coding and non-coding regions: the 5' untranslated region (UTR) fails to classify subtypes
BACKGROUND: The duration of treatment for HCV infection is partly indicated by the genotype of the virus. For studies of disease transmission, vaccine design, and surveillance for novel variants, subtype-level classification is also needed. This study used the Shimodaira-Hasegawa test and related statistical techniques to compare phylogenetic trees obtained from coding and non-coding regions of a whole-genome alignment for the reliability of subtyping in different regions. RESULTS: Different regions of the HCV genome yield inconsistent phylogenies, which can lead to erroneous conclusions about classification of a given infection. In particular, the highly conserved 5' untranslated region (UTR) yields phylogenetic trees with topologies that differ from the HCV polyprotein and complete genome phylogenies. Phylogenetic trees from the NS5B gene reliably cluster related subtypes, and yield topologies consistent with those of the whole genome and polyprotein. CONCLUSION: These results extend those from previous studies and indicate that, unlike the NS5B gene, the 5' UTR contains insufficient variation to resolve HCV classifications to the level of viral subtype, and fails to distinguish genotypes reliably. Use of the 5' UTR for clinical tests to characterize HCV infection should be replaced by a subtype-informative test
HST Scattered Light Imaging and Modeling of the Edge-on Protoplanetary Disk ESO-H 569
We present new HST ACS observations and detailed models for a recently
discovered edge-on protoplanetary disk around ESO H 569 (a low-mass T
Tauri star in the Cha I star forming region). Using radiative transfer models
we probe the distribution of the grains and overall shape of the disk
(inclination, scale height, dust mass, flaring exponent and surface/volume
density exponent) by model fitting to multiwavelength (F606W and F814W) HST
observations together with a literature compiled spectral energy distribution.
A new tool set was developed for finding optimal fits of MCFOST radiative
transfer models using the MCMC code emcee to efficiently explore the high
dimensional parameter space. It is able to self-consistently and simultaneously
fit a wide variety of observables in order to place constraints on the physical
properties of a given disk, while also rigorously assessing the uncertainties
in those derived properties. We confirm that ESO H 569 is an optically
thick nearly edge-on protoplanetary disk. The shape of the disk is well
described by a flared disk model with an exponentially tapered outer edge,
consistent with models previously advocated on theoretical grounds and
supported by millimeter interferometry. The scattered light images and spectral
energy distribution are best fit by an unusually high total disk mass (gas+dust
assuming a ratio of 100:1) with a disk-to-star mass ratio of 0.16.Comment: Accepted for publication in Ap
- …