4,619 research outputs found

    Estimating Optimal Landfill Sizes and Locations in North Dakota

    Get PDF
    Resource /Energy Economics and Policy, Land Economics/Use,

    Comparative analysis of hepatitis C virus phylogenies from coding and non-coding regions: the 5' untranslated region (UTR) fails to classify subtypes

    Get PDF
    BACKGROUND: The duration of treatment for HCV infection is partly indicated by the genotype of the virus. For studies of disease transmission, vaccine design, and surveillance for novel variants, subtype-level classification is also needed. This study used the Shimodaira-Hasegawa test and related statistical techniques to compare phylogenetic trees obtained from coding and non-coding regions of a whole-genome alignment for the reliability of subtyping in different regions. RESULTS: Different regions of the HCV genome yield inconsistent phylogenies, which can lead to erroneous conclusions about classification of a given infection. In particular, the highly conserved 5' untranslated region (UTR) yields phylogenetic trees with topologies that differ from the HCV polyprotein and complete genome phylogenies. Phylogenetic trees from the NS5B gene reliably cluster related subtypes, and yield topologies consistent with those of the whole genome and polyprotein. CONCLUSION: These results extend those from previous studies and indicate that, unlike the NS5B gene, the 5' UTR contains insufficient variation to resolve HCV classifications to the level of viral subtype, and fails to distinguish genotypes reliably. Use of the 5' UTR for clinical tests to characterize HCV infection should be replaced by a subtype-informative test

    HST Scattered Light Imaging and Modeling of the Edge-on Protoplanetary Disk ESO-Hα\alpha 569

    Get PDF
    We present new HST ACS observations and detailed models for a recently discovered edge-on protoplanetary disk around ESO Hα\alpha 569 (a low-mass T Tauri star in the Cha I star forming region). Using radiative transfer models we probe the distribution of the grains and overall shape of the disk (inclination, scale height, dust mass, flaring exponent and surface/volume density exponent) by model fitting to multiwavelength (F606W and F814W) HST observations together with a literature compiled spectral energy distribution. A new tool set was developed for finding optimal fits of MCFOST radiative transfer models using the MCMC code emcee to efficiently explore the high dimensional parameter space. It is able to self-consistently and simultaneously fit a wide variety of observables in order to place constraints on the physical properties of a given disk, while also rigorously assessing the uncertainties in those derived properties. We confirm that ESO Hα\alpha 569 is an optically thick nearly edge-on protoplanetary disk. The shape of the disk is well described by a flared disk model with an exponentially tapered outer edge, consistent with models previously advocated on theoretical grounds and supported by millimeter interferometry. The scattered light images and spectral energy distribution are best fit by an unusually high total disk mass (gas+dust assuming a ratio of 100:1) with a disk-to-star mass ratio of 0.16.Comment: Accepted for publication in Ap
    corecore