610 research outputs found

    The Vehicle, Fall 1970

    Get PDF
    Vol. 13, No. 1 Table of Contents A Thought Written in a Locked RoomJudy Huntpage 1 The Eggshell MoonWilliam Probeckpage 2 PoemBarb Parkerpage 3 4/5, May, 1970J. Michael Sainpage 5 A TreeRichard Stickannpage 6 both or noneMichelle Hallpage 6 The TrainSteve Sestinapage 8 Attempted DiscoveryDonald R. Johnsonpage 16 Island of SmokeVerna L. Jonespage 18 AwakeRobert Bladepage 19 PoemMary Klinkerpage 19 In ChurchMuriel Poolpage 21 PoemBarb Parkerpage 21 PoemMichelle Hallpage 22 Pod\u27nerVerna L. Jonespage 23 Rain and Other ThingsCarol Staniecpage 24 PoemAnn Graffpage 24 Examination of StudentdomMelvin Zaloudekpage 26 Women\u27s LiberationTonya Mortonpage 27 Morning Reflections on the Evening NewsPrudence Herberpage 29 Art and Photography Credits Jim Diaspage 4 Mike Dorseypages 7, 20 David Griffithpages 8, 17, 25 Cover PhotographyMark McKinneyhttps://thekeep.eiu.edu/vehicle/1024/thumbnail.jp

    Clouds in the Coldest Brown Dwarfs: FIRE Spectroscopy of Ross 458C

    Get PDF
    Condensate clouds are a salient feature of L dwarf atmospheres, but have been assumed to play little role in shaping the spectra of the coldest T-type brown dwarfs. Here we report evidence of condensate opacity in the near-infrared spectrum of the brown dwarf candidate Ross 458C, obtained with the Folded-Port Infrared Echellette (FIRE) spectrograph at the Magellan Telescopes. These data verify the low-temperature nature of this source, indicating a T8 spectral classification, log Lbol/Lsun = -5.62+/-0.03, Teff = 650+/-25 K, and a mass at or below the deuterium burning limit. The data also reveal enhanced emission at K-band associated with youth (low surface gravity) and supersolar metallicity, reflecting the properties of the Ross 458 system (age = 150-800 Myr, [Fe/H] = +0.2 to +0.3). We present fits of FIRE data for Ross 458C, the T9 dwarf ULAS J133553.45+113005.2, and the blue T7.5 dwarf SDSS J141624.08+134826.7B, to cloudless and cloudy spectral models from Saumon & Marley. For Ross 458C we confirm a low surface gravity and supersolar metallicity, while the temperature differs depending on the presence (635 [+25,-35] K) or absence (760 [+70,-45] K) of cloud extinction. ULAS J1335+1130 and SDSS J1416+1348B have similar temperatures (595 [+25,-45] K), but distinct surface gravities (log g = 4.0-4.5 cgs versus 5.0-5.5 cgs) and metallicities ([M/H] ~ +0.2 versus -0.2). In all three cases, cloudy models provide better fits to the spectral data, significantly so for Ross 458C. These results indicate that clouds are an important opacity source in the spectra of young cold T dwarfs, and should be considered when characterizing the spectra of planetary-mass objects in young clusters and directly-imaged exoplanets. The characteristics of Ross 458C suggest it could itself be regarded as a planet, albeit one whose cosmogony does not conform with current planet formation theories.Comment: Accepted for publication to ApJ: 18 pages, 11 figures in emulateapj forma

    Melanoma cells break down LPA to establish local gradients that drive chemotactic dispersal.

    Get PDF
    The high mortality of melanoma is caused by rapid spread of cancer cells, which occurs unusually early in tumour evolution. Unlike most solid tumours, thickness rather than cytological markers or differentiation is the best guide to metastatic potential. Multiple stimuli that drive melanoma cell migration have been described, but it is not clear which are responsible for invasion, nor if chemotactic gradients exist in real tumours. In a chamber-based assay for melanoma dispersal, we find that cells migrate efficiently away from one another, even in initially homogeneous medium. This dispersal is driven by positive chemotaxis rather than chemorepulsion or contact inhibition. The principal chemoattractant, unexpectedly active across all tumour stages, is the lipid agonist lysophosphatidic acid (LPA) acting through the LPA receptor LPAR1. LPA induces chemotaxis of remarkable accuracy, and is both necessary and sufficient for chemotaxis and invasion in 2-D and 3-D assays. Growth factors, often described as tumour attractants, cause negligible chemotaxis themselves, but potentiate chemotaxis to LPA. Cells rapidly break down LPA present at substantial levels in culture medium and normal skin to generate outward-facing gradients. We measure LPA gradients across the margins of melanomas in vivo, confirming the physiological importance of our results. We conclude that LPA chemotaxis provides a strong drive for melanoma cells to invade outwards. Cells create their own gradients by acting as a sink, breaking down locally present LPA, and thus forming a gradient that is low in the tumour and high in the surrounding areas. The key step is not acquisition of sensitivity to the chemoattractant, but rather the tumour growing to break down enough LPA to form a gradient. Thus the stimulus that drives cell dispersal is not the presence of LPA itself, but the self-generated, outward-directed gradient

    Percutaneous suction and irrigation for the treatment of recalcitrant pyogenic spondylodiscitis.

    Get PDF
    The primary management of pyogenic spondylodiscitis is conservative. Once the causative organism has been identified, by blood culture or biopsy, administration of appropriate intravenous antibiotics is started. Occasionally patients do not respond to antibiotics and surgical irrigation and debridement is needed. The treatment of these cases is challenging and controversial. Furthermore, many affected patients have significant comorbidities often precluding more extensive surgical intervention. The aim of this study is to describe early results of a novel, minimally invasive percutaneous technique for disc irrigation and debridement in pyogenic spondylodiscitis.This article is freely available via Open Access. Click on the Additional Link above to access the full-text via the publisher's sit

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Improved calibration procedures for the EM27/SUN spectrometers of the COllaborative Carbon Column Observing Network (COCCON)

    Get PDF
    In this study, an extension on the previously reported status of the COllaborative Carbon Column Observing Network\u27s (COCCON) calibration procedures incorporating refined methods is presented. COCCON is a global network of portable Bruker EM27/SUN FTIR spectrometers for deriving column-averaged atmospheric abundances of greenhouse gases. The original laboratory open-path lamp measurements for deriving the instrumental line shape (ILS) of the spectrometer from water vapour lines have been refined and extended to the secondary detector channel incorporated in the EM27/SUN spectrometer for detection of carbon monoxide (CO). The refinements encompass improved spectroscopic line lists for the relevant water lines and a revision of the laboratory pressure measurements used for the analysis of the spectra. The new results are found to be in good agreement with those reported by Frey et al. (2019) and discussed in detail. In addition, a new calibration cell for ILS measurements was designed, constructed and put into service. Spectrometers calibrated since January 2020 were tested using both methods for ILS characterization, open-path (OP) and cell measurements. We demonstrate that both methods can detect the small variations in ILS characteristics between different spectrometers, but the results of the cell method indicate a systematic bias of the OP method. Finally, a revision and extension of the COCCON network instrument-to-instrument calibration factors for XCO2, XCO and XCH4 is presented, incorporating 47 new spectrometers (of 83 in total by now). This calibration is based on the reference EM27/SUN spectrometer operated by the Karlsruhe Institute of Technology (KIT) and spectra collected by the collocated TCCON station Karlsruhe. Variations in the instrumental characteristics of the reference EM27/SUN from 2014 to 2017 were detected, probably arising from realignment and the dual-channel upgrade performed in early 2018. These variations are considered in the evaluation of the instrument-specific calibration factors in order to keep all tabulated calibration results consistent

    The British Army, information management and the First World War revolution in military affairs

    Get PDF
    Information Management (IM) – the systematic ordering, processing and channelling of information within organisations – forms a critical component of modern military command and control systems. As a subject of scholarly enquiry, however, the history of military IM has been relatively poorly served. Employing new and under-utilised archival sources, this article takes the British Expeditionary Force (BEF) of the First World War as its case study and assesses the extent to which its IM system contributed to the emergence of the modern battlefield in 1918. It argues that the demands of fighting a modern war resulted in a general, but not universal, improvement in the BEF’s IM techniques, which in turn laid the groundwork, albeit in embryonic form, for the IM systems of modern armies. KEY WORDS: British Army, Information Management, First World War, Revolution in Military Affairs, Adaptatio
    corecore