256 research outputs found

    Do Borders Matter? Soviet economic Reform after the Coup

    Get PDF
    macroeconomics, Soviet, borders, economic reform

    Factors Controlling Porosity and Permeability in the Curdsville Member of the Lexington Limestone

    Get PDF
    Factors controlling the porosity and permeability of the Curdsville Limestone Member of the Lexington Limestone of Middle Ordovician Age in the Blue Grass Region of Kentucky are geological. Microstratigraphic analysis had led to the division of the lower Lexington Limestone, consisting principally of the Curdsville Member into three beds which may be subdivided into zones made up of several lithologic types and sub-types. Lower, middle, and upper bed characteristics are helpful in determining the regional depositional history in the progressively transgressing Curdsville sea. Paleogeography of Curdsville time has been determined by delineation of two local facies: (1) a carbonate bank--shoal area facies, and (2) a shelf--channel area facies. Permeable carbonate bank--shoal facies are best developed on the structurally high Jessamine Dome Shoal Area where the Curdsville Limestone is found at shallow depth. Ground waters of meteoric origin have created sink holes, solution valleys, and caverns through solution enlargement of fractures comprising an extensive intersecting joint system. Detailed examination of the Bryantsville Quadrangle on the Jessamine Dome Shoal Area indicates that fracture traces such as sink hole, solution valley, and stream channel alignments are controlled mainly by nearly vertical joints in the Curdsville and underlying Tyrone Limestones. High frequency and intersection of joint fractures may indicate the presence of permeable limestone aquifers at shallow depth, The hypothesis can be tested by drilling several wells in prospective areas

    Socio-economic Impacts—Fisheries

    Get PDF
    Fishers and scientists have known for over 100 years that the status of fish stocks can be greatly influenced by prevailing climatic conditions. Based on historical sea surface temperature data, the North Sea has been identified as one of 20 ‘hot spots’ of climate change globally and projections for the next 100 years suggest that the region will continue to warm. The consequences of this rapid temperature rise are already being seen in shifts in species distribution and variability in stock recruitment. This chapter reviews current evidence for climate change effects on fisheries in the North Sea—one of the most important fishing grounds in the world—as well as available projections for North Sea fisheries in the future. Discussion focuses on biological, operational and wider market concerns, as well as on possible economic consequences. It is clear that fish communities and the fisheries that target them will be very different in 50 or 100 years’ time and that management and governance will need to adapt accordingly

    The Influence of Hypoxia and pH on Bioluminescence Imaging of Luciferase-Transfected Tumor Cells and Xenografts

    Get PDF
    Bioluminescence imaging (BLI) is a relatively new noninvasive technology used for quantitative assessment of tumor growth and therapeutic effect in living animal models. BLI involves the generation of light by luciferase-expressing cells following administration of the substrate luciferin in the presence of oxygen and ATP. In the present study, the effects of hypoxia, hypoperfusion, and pH on BLI signal (BLS) intensity were evaluated in vitro using cultured cells and in vivo using a xenograft model in nude mice. The intensity of the BLS was significantly reduced in the presence of acute and chronic hypoxia. Changes in cell density, viability, and pH also affected BLS. Although BLI is a convenient non-invasive tool for tumor assessment, these factors should be considered when interpreting BLS intensity, especially in solid tumors that could be hypoxic due to rapid growth, inadequate blood supply, and/or treatment

    A Comparative Study of the ReCell® Device and Autologous Spit-Thickness Meshed Skin Graft in the Treatment of Acute Burn Injuries.

    Get PDF
    Early excision and autografting are standard care for deeper burns. However, donor sites are a source of significant morbidity. To address this, the ReCell® Autologous Cell Harvesting Device (ReCell) was designed for use at the point-of-care to prepare a noncultured, autologous skin cell suspension (ASCS) capable of epidermal regeneration using minimal donor skin. A prospective study was conducted to evaluate the clinical performance of ReCell vs meshed split-thickness skin grafts (STSG, Control) for the treatment of deep partial-thickness burns. Effectiveness measures were assessed to 1 year for both ASCS and Control treatment sites and donor sites, including the incidence of healing, scarring, and pain. At 4 weeks, 98% of the ASCS-treated sites were healed compared with 100% of the Controls. Pain and assessments of scarring at the treatment sites were reported to be similar between groups. Significant differences were observed between ReCell and Control donor sites. The mean ReCell donor area was approximately 40 times smaller than that of the Control (P < .0001), and after 1 week, significantly more ReCell donor sites were healed than Controls (P = .04). Over the first 16 weeks, patients reported significantly less pain at the ReCell donor sites compared with Controls (P ≤ .05 at each time point). Long-term patients reported higher satisfaction with ReCell donor site outcomes compared with the Controls. This study provides evidence that the treatment of deep partial-thickness burns with ASCS results in comparable healing, with significantly reduced donor site size and pain and improved appearance relative to STSG

    Integrated Economic and Climate Modeling

    Get PDF
    This survey examines the history and current practice in integrated assessment models (IAMs) of the economics of climate change. It begins with a review of the emerging problem of climate change. The next section provides a brief sketch of the rise of IAMs in the 1970s and beyond. The subsequent section is an extended exposition of one IAM, the DICE/RICE family of models. The purpose of this description is to provide readers an example of how such a model is developed and what the major components are. The final section discusses major important open questions that continue to occupy IAM modelers. These involve issues such as the discount rate, uncertainty, the social cost of carbon, the potential for catastrophic climate change, algorithms, and fat-tailed distributions. These issues are ones that pose both deep intellectual challenges as well as important policy implications for climate change and climate-change policy

    CO\u3csub\u3e2\u3c/sub\u3e and fire influence tropical ecosystem stability in response to climate change

    Get PDF
    Interactions between climate, fire and CO2 are believed to play a crucial role in controlling the distributions of tropical woodlands and savannas, but our understanding of these processes is limited by the paucity of data from undisturbed tropical ecosystems. Here we use a 28,000-year integrated record of vegetation, climate and fire from West Africa to examine the role of these interactions on tropical ecosystem stability. We find that increased aridity between 28–15 kyr B.P. led to the widespread expansion of tropical grasslands, but that frequent fires and low CO2 played a crucial role in stabilizing these ecosystems, even as humidity changed. This resulted in an unstable ecosystem state, which transitioned abruptly from grassland to woodlands as gradual changes in CO2 and fire shifted the balance in favor of woody plants. Since then, high atmospheric CO2 has stabilized tropical forests by promoting woody plant growth, despite increased aridity. Our results indicate that the interactions between climate, CO2 and fire can make tropical ecosystems more resilient to change, but that these systems are dynamically unstable and potentially susceptible to abrupt shifts between woodland and grassland dominated states in the future
    corecore