661 research outputs found
The effects of the HIV-1 Tat protein and morphine on the structure and function of the hippocampal CA1 subfield
HIV is capable of causing a set of neurological diseases collectively termed the HIV Associated Neurocognitive Disorders (HAND). Worsening pathology is observed in HIV+ individuals who use opioid drugs. Memory problems are often observed in HAND, implicating HIV pathology in the hippocampus, and are also known to be exacerbated by morphine use. HIV-1 Tat was demonstrated to reduce spatial memory performance in multiple tasks, and individual subsets of CA1 interneurons were found to be selectively vulnerable to the effects of Tat, notably nNOS+/NPY- interneurons of the pyramidal layer and stratum radiatum, PV+ neurons of the pyramidal layer, and SST+ neurons of stratum oriens. Each of these interneuron subsets are hypothesized to form part of a microcircuit involved in memory formation. Electrophysiological assessment of hippocampal pyramidal neurons with Tat and morphine together revealed that Tat caused a reduction in firing frequency, however, chronic morphine exposure did not have any effect. When morphine was removed after chronic exposure, non-interacting effects of Tat and morphine withholding on firing frequency were observed, suggesting that a homeostatic rebalancing of CA1 excitation/inhibition balance takes place in response to chronic morphine exposure independently of any Tat effects. Additionally, differential morphological effects of Tat and morphine were observed in each of the three major dendritic compartments, with SR being less affected, suggesting complex circuit responses to these insults reflecting local change and potentially changes in inputs from other brain regions. Behaviorally, Tat and morphine interactions occur in spatial memory, with morphine potentially obviating Tat effects
Conservation of a microRNA cluster in parasitic nematodes and profiling of miRNAs in excretory-secretory products and microvesicles of Haemonchus contortus
microRNAs are small non-coding RNAs that are important regulators of gene expression in a range of animals, including nematodes. We have analysed a cluster of four miRNAs from the pathogenic nematode species Haemonchus contortus that are closely linked in the genome. We find that the cluster is conserved only in clade V parasitic nematodes and in some ascarids, but not in other clade III species nor in clade V free-living nematodes. Members of the cluster are present in parasite excretory-secretory products and can be detected in the abomasum and draining lymph nodes of infected sheep, indicating their release in vitro and in vivo. As observed for other parasitic nematodes, H. contortus adult worms release extracellular vesicles (EV). Small RNA libraries were prepared from vesicle-enriched and vesicle-depleted supernatants from both adult worms and L4 stage larvae. Comparison of the miRNA species in the different fractions indicated that specific miRNAs are packaged within vesicles, while others are more abundant in vesicle-depleted supernatant. Hierarchical clustering analysis indicated that the gut is the likely source of vesicle-associated miRNAs in the L4 stage, but not in the adult worm. These findings add to the growing body of work demonstrating that miRNAs released from parasitic helminths may play an important role in host-parasite interactions
Hiv-1 tat and morphine differentially disrupt pyramidal cell structure and function and spatial learning in hippocampal area ca1: Continuous versus interrupted morphine exposure
About half the people infected with human immunodeficiency virus (HIV) have neurocognitive deficits that often include memory impairment and hippocampal deficits, which can be exacerbated by opioid abuse. To explore the effects of opioids and HIV on hippocampal CA1 pyramidal neuron structure and function, we induced HIV-1 transactivator of transcription (Tat) expression in transgenic mice for 14 d and co-administered time-release morphine or vehicle subcutaneous implants during the final 5 d (days 9–14) to establish steady-state morphine levels. Morphine was withheld from some ex vivo slices during recordings to begin to assess the initial pharmacokinetic consequences of opioid withdrawal. Tat expression reduced hippocampal CA1 pyramidal neuronal excitability at lower stimulating currents. Pyramidal cell firing rates were unaffected by continuous morphine exposure. Behaviorally, exposure to Tat or high dosages of morphine impaired spatial memory. Exposure to Tat and steady-state levels of morphine appeared to have largely independent effects on pyramidal neuron structure and function, a response that is distinct from other vulnerable brain regions such as the striatum. By contrast, acutely withholding morphine (from morphine-tolerant ex vivo slices) revealed unique and selective neuroadaptive shifts in CA1 pyramidal neuronal excitability and dendritic plasticity, including some interactions with Tat. Collectively, the results show that opioid-HIV interactions in hippocampal area CA1 are more nuanced than previously assumed, and appear to vary depending on the outcome assessed and on the pharmacokinetics of morphine exposure
HIV-1 Tat causes cognitive deficits and selective loss of parvalbumin, somatostatin, and neuronal nitric oxide synthase expressing hippocampal CA1 interneuron subpopulations
Memory deficits are characteristic of HIV-associated neurocognitive disorders (HAND) and co-occur with hippocampal pathology. The HIV-1 transactivator of transcription (Tat), a regulatory protein, plays a significant role in these events, but the cellular mechanisms involved are poorly understood. Within the hippocampus, diverse populations of interneurons form complex networks; even subtle disruptions can drastically alter synaptic output, resulting in behavioral dysfunction. We hypothesized that HIV-1 Tat would impair cognitive behavior and injure specific hippocampal interneuron subtypes. Male transgenic mice that inducibly expressed HIV-1 Tat (or non-expressing controls) were assessed for cognitive behavior or had hippocampal CA1 subregions evaluated via interneuron subpopulation markers. Tat exposure decreased spatial memory in a Barnes maze and mnemonic performance in a novel object recognition test. Tat reduced the percentage of neurons expressing neuronal nitric oxide synthase (nNOS) without neuropeptide Y immunoreactivity in the stratum pyramidale and the stratum radiatum, parvalbumin in the stratum pyramidale, and somatostatin in the stratum oriens, which are consistent with reductions in interneuron-specific interneuron type 3 (IS3), bistratified, and oriens-lacunosum-moleculare interneurons, respectively. The findings reveal that an interconnected ensemble of CA1 nNOS-expressing interneurons, the IS3 cells, as well as subpopulations of parvalbumin- and somatostatin-expressing interneurons are preferentially vulnerable to HIV-1 Tat. Importantly, the susceptible interneurons form a microcircuit thought to be involved in feedback inhibition of CA1 pyramidal cells and gating of CA1 pyramidal cell inputs. The identification of vulnerable CA1 hippocampal interneurons may provide novel insight into the basic mechanisms underlying key functional and neurobehavioral deficits associated with HAND
Deep Thermal Imaging: Proximate Material Type Recognition in the Wild through Deep Learning of Spatial Surface Temperature Patterns
We introduce Deep Thermal Imaging, a new approach for close-range automatic
recognition of materials to enhance the understanding of people and ubiquitous
technologies of their proximal environment. Our approach uses a low-cost mobile
thermal camera integrated into a smartphone to capture thermal textures. A deep
neural network classifies these textures into material types. This approach
works effectively without the need for ambient light sources or direct contact
with materials. Furthermore, the use of a deep learning network removes the
need to handcraft the set of features for different materials. We evaluated the
performance of the system by training it to recognise 32 material types in both
indoor and outdoor environments. Our approach produced recognition accuracies
above 98% in 14,860 images of 15 indoor materials and above 89% in 26,584
images of 17 outdoor materials. We conclude by discussing its potentials for
real-time use in HCI applications and future directions.Comment: Proceedings of the 2018 CHI Conference on Human Factors in Computing
System
Leaf-litter leachate is distinct in optical properties and bioavailability to stream heterotrophs
Dissolved organic C (DOC) leached from leaf litter contributes to the C pool of stream ecosystems and affects C cycling in streams. We studied how differences in leaf-litter chemistry affect the optical properties and decomposition of DOC. We used 2 species of cottonwoods (Populus) and their naturally occurring hybrids that differ in leaf-litter phytochemistry and decomposition rate. We measured DOC and nutrient concentration in leaf leachates and determined the effect of DOC quality on heterotrophic respiration in 24-h incubations with stream sediments. Differences in DOC composition and quality were characterized with fluorescence spectroscopy. Rapidly decomposing leaves with lower tannin and lignin concentrations leached ~40 to 50% more DOC and total dissolved N than did slowly decomposing leaves. Rates of heterotrophic respiration were 25 to 50% higher on leachate from rapidly decomposing leaf types. Rates of heterotrophic respiration were related to metrics of aromaticity. Specifically, rates of respiration were correlated negatively with the Fluorescence Index and positively with Specific Ultraviolet Absorbance (SUVA254) and T280 tryptophan-like fluorescence peak. These results reveal that leaf-litter DOC is distinctly different from ambient streamwater DOC. The relationships between optical characteristics of leaf leachate and bioavailability are opposite those found in streamwater DOC. Differences in phytochemistry among leaf types can influence stream ecosystems with respect to DOC quantity, composition, and rates of stream respiration. These patterns suggest that the relationship between the chemical structure of DOC and its biogeochemistry is more complex than previously recognized. These unique properties of leaf-litter DOC will be important when assessing the effects of terrestrial C on aquatic ecosystems, especially during leaf fall
Law as a Tool for Preventing Chronic Diseases: Expanding the Spectrum of Effective Public Health Strategies
Law, which is a fundamental element of effective public health policy and practice, played a crucial role in many of public health's greatest achievements of the 20th century. Still, conceptual legal frameworks for the systematic application of law to chronic disease prevention and control have not been fully recognized and used to address public health needs. Development and implementation of legal frameworks could broaden the range of effective public health strategies and provide valuable tools for the public health workforce, especially for state and local health department program managers and state and national policy makers. In an effort to expand the range of effective public health interventions, the Centers for Disease Control and Prevention will work with its partners to explore the development of systematic legal frameworks as a tool for preventing chronic diseases and addressing the growing epidemic of obesity, heart disease, stroke, and other chronic diseases and their risk factors
Clone stories: ‘shallow are the souls that have forgotten how to shudder’
This article explores literary interrogations of the bioethical implications of cloning. It does so by outlining the basic science of cloning before going on to question the dominance of the Freudian notion of the ‘uncanny’ in the critical theoretical responses to cloning by figures such as Jean Baudrillard and Slavoj Žižek. The second half of the article turns to two recent novels exploring the theme of cloning: Eva Hoffman's The Secret, and Kazuo Ishiguro's Never Let Me Go. It is argued that the former rehearses familiar themes of revulsion connected to the figure of the clone, yet resolves the struggle for identity in a ‘human’ conclusion; whereas the latter maintains the uncanny in-human difference of the clone even as it highlights the dangers of the biopolitical instrumentalization of life itself. The article therefore argues that fictional treatments of cloning can provide an important alternative to simplified debates on the subject in the mass media
Deep Underground Science and Engineering Laboratory - Preliminary Design Report
The DUSEL Project has produced the Preliminary Design of the Deep Underground
Science and Engineering Laboratory (DUSEL) at the rehabilitated former
Homestake mine in South Dakota. The Facility design calls for, on the surface,
two new buildings - one a visitor and education center, the other an experiment
assembly hall - and multiple repurposed existing buildings. To support
underground research activities, the design includes two laboratory modules and
additional spaces at a level 4,850 feet underground for physics, biology,
engineering, and Earth science experiments. On the same level, the design
includes a Department of Energy-shepherded Large Cavity supporting the Long
Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates
one laboratory module and additional spaces for physics and Earth science
efforts. With input from some 25 science and engineering collaborations, the
Project has designed critical experimental space and infrastructure needs,
including space for a suite of multidisciplinary experiments in a laboratory
whose projected life span is at least 30 years. From these experiments, a
critical suite of experiments is outlined, whose construction will be funded
along with the facility. The Facility design permits expansion and evolution,
as may be driven by future science requirements, and enables participation by
other agencies. The design leverages South Dakota's substantial investment in
facility infrastructure, risk retirement, and operation of its Sanford
Laboratory at Homestake. The Project is planning education and outreach
programs, and has initiated efforts to establish regional partnerships with
underserved populations - regional American Indian and rural populations
L-Edge Spectroscopy of Dilute, Radiation-Sensitive Systems Using a Transition-Edge-Sensor Array
We present X-ray absorption spectroscopy and resonant inelastic X-ray
scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous
ferricyanide. These measurements demonstrate the ability of high-throughput
transition-edge-sensor (TES) spectrometers to access the rich soft X-ray
(100-2000eV) spectroscopy regime for dilute and radiation-sensitive samples.
Our low-concentration data are in agreement with high-concentration
measurements recorded by conventional grating-based spectrometers. These
results show that soft X-ray RIXS spectroscopy acquired by high-throughput TES
spectrometers can be used to study the local electronic structure of dilute
metal-centered complexes relevant to biology, chemistry and catalysis. In
particular, TES spectrometers have a unique ability to characterize frozen
solutions of radiation- and temperature-sensitive samples.Comment: 19 pages, 4 figure
- …