8,608 research outputs found

    Sediment management for Southern California mountains, coastal plains and shoreline

    Get PDF
    The Environmental Quality Laboratory at Caltech and the Shore Processes Laboratory at Scripps Institution of Oceanography have jointly undertaken a study of regional sediment balance problems in coastal southern California (see map in Figure 1). The overall objective in this study is to define specific alternatives in sediment management that may be implemented to alleviate a) existing sediment imbalance problems (e.g. inland debris disposal, local shoreline erosion) and b) probable future problems that have not yet manifested themselves. These alternatives will be identified through a consideration of economic, legal, and institutional issues as well as an analysis of governing physical processes and engineering constraints. The first part of this study (Phase I), which is currently under way, involves a compilation and analysis of all available data in an effort to obtain an accurate definition of the inland/coastal regional sediment balance under natural conditions, and specific quantitative effects man-made controls have on the overall natural process. During FY77, substantial progress was made at EQL and SPL in achieving the objectives of the initial Planning and Assessment Phase of the CIT/SIO Sediment Management Project. Financial support came from Los Angeles County, U.S. Geological Survey, Orange County, U.S. Army Corps of Engineers, and discretionary funding provided by a grant from the Ford Foundation. The current timetable for completion of this phase is Fall 1978. This report briefly describes the project status, including general administration, special activities, and research work as of January 1978

    Shockwaves in converging geometries

    Get PDF
    Plate impact experiments are a powerful tool in equation of state (EOS) development, but are inherently limited by the range of impact velocities accessible to the gun. In an effort to dramatically increase the range of pressures which can be studied with available impact velocities, a new experimental technique is being developed. The possibility of using a confined converging target to focus Shockwaves and produce a large amplitude pressure pulse is examined. When the planar shock resulting from impact enters the converging target the impedance mismatch at the boundary of the confinement produces reflected Mach waves and the subsequent wave interactions produce a diffraction cycle resulting in increases in the shock strength with each cycle. Since this configuration is limited to relatively low impedance targets, a second technique is proposed in which the target is two concentric cylinders designed such that the inner cylinder will have a lower shock velocity than the much larger shock velocity in the outer cylinder. The resulting dispersion in the wave front creates converging shocks, which will interact and eventually result in a steady Mach configuration with an increase in pressure in the Mach disk. Numerical simulations indicate a significant increase in pressure for both methods and show promise for the proposed concepts

    A multi-photon magneto-optical trap

    Full text link
    We demonstrate a Magneto-Optical Trap (MOT) configuration which employs optical forces due to light scattering between electronically excited states of the atom. With the standard MOT laser beams propagating along the {\it x}- and {\it y}- directions, the laser beams along the {\it z}-direction are at a different wavelength that couples two sets of {\it excited} states. We demonstrate efficient cooling and trapping of cesium atoms in a vapor cell and sub-Doppler cooling on both the red and blue sides of the two-photon resonance. The technique demonstrated in this work may have applications in background-free detection of trapped atoms, and in assisting laser-cooling and trapping of certain atomic species that require cooling lasers at inconvenient wavelengths.Comment: 10 pages, 5 figure

    Competing With the NYSE

    Get PDF
    We study the stock exchange rivalry between the New York Stock Exchange (NYSE) and the Consolidated Stock Exchange (Consolidated) from 1885 to 1926 using a new database of bid-ask spreads and stock data collected from The New York Times and other primary sources. The magnitude of this important, but largely forgotten rivalry was substantial. From 1885 to 1895, the ratio of Consolidated to NYSE volume averaged 40 percent and reached as high as 60 percent. The market share of the Consolidated averaged 23 percent for approximately 40 years. The Consolidated focused on the relatively liquid securities on the NYSE as measured by bid-ask spreads and trading volume. Our results suggest that NYSE bid-ask spreads fell by more than 10 percent when the Consolidated began to trade NYSE stocks while bid-ask spreads for our quasicontrol group of stocks trading on the Boston Stock Exchange remain unchanged. The effect persisted over the entire history of the stock market rivalry until a series of scandals and investigations of the Consolidated by state regulators led to the demise of the exchange in the 1920s. The analysis suggests three conclusions: (1) the NYSE has faced significant long-run competition (2) the NYSE may be susceptible to a similar level of competition in the future and (3) that the Consolidated may have improved the efficiency of stock prices by contributing to the price discovery process.

    BOOK REVIEWS

    Get PDF
    corecore