14,060 research outputs found

    Municipal Economy and Land Use Restrictions

    Get PDF

    Electrostatic discharge test apparatus

    Get PDF
    Electrostatic discharge properties of materials are quantitatively measured and ranked. Samples (20) are rotated on a turntable (15) beneath selectable, co-available electrostatic chargers (30/40), one being a corona charging element (30) and the other a sample-engaging triboelectric charging element (40). They then pass under a voltage meter (25) to measure the amount of residual charge on the samples (20). After charging is discontinued, measurements are continued to record the charge decay history over time

    Alien Registration- Smith, William C. (Mars Hill, Aroostook County)

    Get PDF
    https://digitalmaine.com/alien_docs/34020/thumbnail.jp

    Determination of atmospheric moisture structure and infrared cooling rates from high resolution MAMS radiance data

    Get PDF
    This program has applied Multispectral Atmospheric Mapping Sensor (MAMS) high resolution data to the problem of monitoring atmospheric quantities of moisture and radiative flux at small spatial scales. MAMS, with 100-m horizontal resolution in its four infrared channels, was developed to study small scale atmospheric moisture and surface thermal variability, especially as related to the development of clouds, precipitation, and severe storms. High-resolution Interferometer Sounder (HIS) data has been used to develop a high spectral resolution retrieval algorithm for producing vertical profiles of atmospheric temperature and moisture. The results of this program are summarized and a list of publications resulting from this contract is presented. Selected publications are attached as an appendix

    The Nusselt numbers of horizontal convection

    Get PDF
    We consider the problem of horizontal convection in which non-uniform buoyancy, bs(x,y)b_{\rm s}(x,y), is imposed on the top surface of a container and all other surfaces are insulating. Horizontal convection produces a net horizontal flux of buoyancy, J\mathbf{J}, defined by vertically and temporally averaging the interior horizontal flux of buoyancy. We show that J⋅∇bs‾=−κ⟨∣∇b∣2⟩\overline{\mathbf{J}\cdot\mathbf{\nabla}b_{\rm s}}=-\kappa\langle|\boldsymbol{\nabla}b|^2\rangle; overbar denotes a space-time average over the top surface, angle brackets denote a volume-time average and κ\kappa is the molecular diffusivity of buoyancy bb. This connection between J\mathbf{J} and κ⟨∣∇b∣2⟩\kappa\langle|\boldsymbol{\nabla}b|^2\rangle justifies the definition of the horizontal-convective Nusselt number, NuNu, as the ratio of κ⟨∣∇b∣2⟩\kappa \langle|\boldsymbol{\nabla}b|^2\rangle to the corresponding quantity produced by molecular diffusion alone. We discuss the advantages of this definition of NuNu over other definitions of horizontal-convective Nusselt number currently in use. We investigate transient effects and show that κ⟨∣∇b∣2⟩\kappa \langle|\boldsymbol{\nabla}b|^2\rangle equilibrates more rapidly than other global averages, such as the domain averaged kinetic energy and bottom buoyancy. We show that κ⟨∣∇b∣2⟩\kappa\langle|\boldsymbol{\nabla} b|^2\rangle is essentially the volume-averaged rate of Boussinesq entropy production within the enclosure. In statistical steady state, the interior entropy production is balanced by a flux of entropy through the top surface. This leads to an equivalent "surface Nusselt number", defined as the surface average of vertical buoyancy flux through the top surface times the imposed surface buoyancy bs(x,y)b_{\rm s}(x,y). In experiments it is likely easier to evaluate the surface entropy flux, rather than the volume integral of ∣∇b∣2|\mathbf{\nabla}b|^2 demanded by κ⟨∣∇b∣2⟩\kappa\langle|\mathbf{\nabla}b|^2\rangle.Comment: 16 pages, 7 figure
    • …
    corecore