212 research outputs found
NORTH DAKOTA SHOPPER PERCEPTIONS OF GENETICALLY MODIFIED ORGANISMS AND FOOD: RESULTS OF A WINTER 2003 SURVEY
Replaced with revised version of paper 07/23/04.Biotechnology, Genetic Modification, Consumer Preferences, Food Consumption/Nutrition/Food Safety, Research and Development/Tech Change/Emerging Technologies,
ASSESSING NEW-GRADUATE APPLICANTS: ACADEMIC PERCEPTIONS AND AGRIBUSINESS REALITIES
This study empirically compares the level of importance assigned to the knowledge, skills, and experiences of applicants for entry-level positions by members of the agribusiness community and how these criteria were perceived by chairpersons of departments of agricultural economics. Chairpersons had a good understanding of criteria important to employers in evaluating applicants and how they prioritize these criteria. Communication and interpersonal skills were ranked as the most important criteria by both groups. Industry members assigned lower levels of importance for formal international training, an attribution largely shared by academic counterparts.agribusiness, agricultural economics, curriculum, international education, international exchanges, Teaching/Communication/Extension/Profession,
PERCEPTIONS OF GENETICALLY MODIFIED AND ORGANIC FOODS AND PROCESSES: NORTH DAKOTA COLLEGE STUDENTS
Perceptions of genetically modified (GM) and organic food among North Dakota college students were elicited and compared. Participants responded to one of two survey instruments containing identical wording except for reference to genetic modification or organic, after reading a primer defining the term used in their instrument. Participants' indicated their level of agreement with statements in the construct areas of health, environment, ethics, regulation, and risk. Responses were compared among survey instruments and to responses to previous surveys of Americans and of shoppers in North Dakota. Organic food was perceived as a healthier and safer choice. Organic practices were perceived to be more environmentally sound. Respondents expressed a level of concern over the unknown effects GM food could have on the environment and society as a whole. However, participants generally felt that genetic modification could be used effectively and valued some of the associated benefits. Reliability assessment revealed that statements within each construct area are reliable and can be used in future surveys.Genetically Modified, Consumer Perceptions, Organic, Food Consumption/Nutrition/Food Safety,
Self-Generated Magnetic Fields in Galactic Cooling Flows
Interstellar magnetic fields in elliptical galaxies are assumed to have their
origin in stellar fields that accompany normal mass loss from an evolving
population of old stars. The seed fields are amplified by interstellar
turbulence driven by stellar mass loss and supernova events. These disordered
fields are further amplified by time-dependent compression in the inward moving
galactic cooling flow and are expected to dominate near the galactic core.
Under favorable circumstances, fields similar in strength to those observed G can be generated solely from these natural
galactic processes. In general the interstellar field throughout elliptical
galaxies is determined by the outermost regions in the interstellar gas where
the turbulent dynamo process can occur. Because of the long hydrodynamic flow
times in galactic cooling flows, currently observed magnetic fields may result
from periods of intense turbulent field amplification that occurred in the
outer galaxy in the distant past. Particularly strong fields in ellipticals may
result from ancient galactic mergers or shear turbulence introduced at the
boundary between the interstellar gas and ambient cluster gas.Comment: 21 pages in AASTEX LaTeX with 2 figures; accepted by Astrophysical
Journa
Duox, Flotillin-2, and Src42A Are Required to Activate or Delimit the Spread of the Transcriptional Response to Epidermal Wounds in Drosophila
The epidermis is the largest organ of the body for most animals, and the first line of defense against invading pathogens. A breach in the epidermal cell layer triggers a variety of localized responses that in favorable circumstances result in the repair of the wound. Many cellular and genetic responses must be limited to epidermal cells that are close to wounds, but how this is regulated is still poorly understood. The order and hierarchy of epidermal wound signaling factors are also still obscure. The Drosophila embryonic epidermis provides an excellent system to study genes that regulate wound healing processes. We have developed a variety of fluorescent reporters that provide a visible readout of wound-dependent transcriptional activation near epidermal wound sites. A large screen for mutants that alter the activity of these wound reporters has identified seven new genes required to activate or delimit wound-induced transcriptional responses to a narrow zone of cells surrounding wound sites. Among the genes required to delimit the spread of wound responses are Drosophila Flotillin-2 and Src42A, both of which are transcriptionally activated around wound sites. Flotillin-2 and constitutively active Src42A are also sufficient, when overexpressed at high levels, to inhibit wound-induced transcription in epidermal cells. One gene required to activate epidermal wound reporters encodes Dual oxidase, an enzyme that produces hydrogen peroxide. We also find that four biochemical treatments (a serine protease, a Src kinase inhibitor, methyl-ß-cyclodextrin, and hydrogen peroxide) are sufficient to globally activate epidermal wound response genes in Drosophila embryos. We explore the epistatic relationships among the factors that induce or delimit the spread of epidermal wound signals. Our results define new genetic functions that interact to instruct only a limited number of cells around puncture wounds to mount a transcriptional response, mediating local repair and regeneration
Acute mountain sickness.
Acute mountain sickness (AMS) is a clinical syndrome occurring in otherwise healthy normal individuals who ascend rapidly to high altitude. Symptoms develop over a period ofa few hours or days. The usual symptoms include headache, anorexia, nausea, vomiting, lethargy, unsteadiness of gait, undue dyspnoea on moderate exertion and interrupted sleep. AMS is unrelated to physical fitness, sex or age except that young children over two years of age are unduly susceptible. One of the striking features ofAMS is the wide variation in individual susceptibility which is to some extent consistent. Some subjects never experience symptoms at any altitude while others have repeated attacks on ascending to quite modest altitudes. Rapid ascent to altitudes of 2500 to 3000m will produce symptoms in some subjects while after ascent over 23 days to 5000m most subjects will be affected, some to a marked degree. In general, the more rapid the ascent, the higher the altitude reached and the greater the physical exertion involved, the more severe AMS will be. Ifthe subjects stay at the altitude reached there is a tendency for acclimatization to occur and symptoms to remit over 1-7 days
A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder
Autism spectrum disorder (ASD) is a highly heritable disorder of complex and heterogeneous aetiology. It is primarily characterized by altered cognitive ability including impaired language and communication skills and fundamental deficits in social reciprocity. Despite some notable successes in neuropsychiatric genetics, overall, the high heritability of ASD (~90%) remains poorly explained by common genetic risk variants. However, recent studies suggest that rare genomic variation, in particular copy number variation, may account for a significant proportion of the genetic basis of ASD. We present a large scale analysis to identify candidate genes which may contain low-frequency recessive variation contributing to ASD while taking into account the potential contribution of population differences to the genetic heterogeneity of ASD. Our strategy, homozygous haplotype (HH) mapping, aims to detect homozygous segments of identical haplotype structure that are shared at a higher frequency amongst ASD patients compared to parental controls. The analysis was performed on 1,402 Autism Genome Project trios genotyped for 1 million single nucleotide polymorphisms (SNPs). We identified 25 known and 1,218 novel ASD candidate genes in the discovery analysis including CADM2, ABHD14A, CHRFAM7A, GRIK2, GRM3, EPHA3, FGF10, KCND2, PDZK1, IMMP2L and FOXP2. Furthermore, 10 of the previously reported ASD genes and 300 of the novel candidates identified in the discovery analysis were replicated in an independent sample of 1,182 trios. Our results demonstrate that regions of HH are significantly enriched for previously reported ASD candidate genes and the observed association is independent of gene size (odds ratio 2.10). Our findings highlight the applicability of HH mapping in complex disorders such as ASD and offer an alternative approach to the analysis of genome-wide association data
Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders
Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe
- …