115 research outputs found

    Mutations in the E2 Glycoprotein of Venezuelan Equine Encephalitis Virus Confer Heparan Sulfate Interaction, Low Morbidity, and Rapid Clearance from Blood of Mice

    Get PDF
    AbstractThe arbovirus, Venezuelan equine encephalitis virus (VEE), causes disease in humans and equines during periodic outbreaks. A murine model, which closely mimics the encephalitic form of the disease, was used to study mechanisms of attenuation. Molecularly cloned VEE viruses were used: a virulent, epizootic, parental virus and eight site-specific glycoprotein mutants derived from the parental virus. Four of these mutants were selected in vitro for rapid binding and penetration, resulting in positive charge changes in the E2 glycoprotein from glutamic acid or threonine to lysine (N. L. Davis, N. Powell, G. F. Greenwald, L. V. Willis, B. J. Johnson, J. F. Smith, and R. E. Johnston, Virology 183, 20–31, 1991). Tissue culture adaptation also selected for the ability to bind heparan sulfate as evidenced by inhibition of plaque formation by heparin, decreased infectivity for CHO cells deficient for heparan sulfate, and tight binding to heparin–agarose beads. In contrast, the parental virus and three other mutants did not use heparan sulfate as a receptor. All eight mutants were partially or completely attenuated with respect to mortality in adult mice after a subcutaneous inoculation, and the five mutants that interacted with heparan sulfate in vitro had low morbidity (0–50%). These same five mutants were cleared rapidly from the blood after an intravenous inoculation. In contrast, the parental virus and the other three mutants were cleared very slowly. In summary, the five VEE viruses that contain tissue-culture-selected mutations interacted with cell surface heparan sulfate, and this interaction correlated with low morbidity and rapid clearance from the blood. We propose that one mechanism of attenuation is rapid viral clearance in vivo due to binding of the virus to ubiquitous heparan sulfate

    Attenuation of Sindbis virus variants incorporating uncleaved PE2 glycoprotein is correlated with attachment to cell-surface heparan sulfate

    Get PDF
    Sindbis virus virions incorporating uncleaved precursor envelope protein PE2 bind efficiently to cell-surface heparan sulfate (HS) because the furin cleavage site (a consensus HS-binding domain) is retained in the mature virus particle. However, they are essentially nonviable. Resuscitating mutations selected in the E3 or E2 protein preserve the PE2 noncleaving phenotype and HS binding, but facilitate fusion, and thereby restore wild-type infectivity on cultured cells. Here, we have demonstrated that the resuscitated PE2 noncleaving virus was almost avirulent in vivo, but mutated during the infection. Mutants had increased virulence and cleavage of PE2, with reduced HS binding capacity. We hypothesize that HS binding leads to sequestration of PE2 noncleaving virus particles and suppression of serum viremia, thereby selecting for evolution of the virus into a PE2-cleaving, low HS-binding phenotype

    Attenuation of Sindbis virus variants incorporating uncleaved PE2 glycoprotein is correlated with attachment to cell-surface heparan sulfate

    Get PDF
    Sindbis virus virions incorporating uncleaved precursor envelope protein PE2 bind efficiently to cell-surface heparan sulfate (HS) because the furin cleavage site (a consensus HS-binding domain) is retained in the mature virus particle. However, they are essentially nonviable. Resuscitating mutations selected in the E3 or E2 protein preserve the PE2 noncleaving phenotype and HS binding, but facilitate fusion, and thereby restore wild-type infectivity on cultured cells. Here, we have demonstrated that the resuscitated PE2 noncleaving virus was almost avirulent in vivo, but mutated during the infection. Mutants had increased virulence and cleavage of PE2, with reduced HS binding capacity. We hypothesize that HS binding leads to sequestration of PE2 noncleaving virus particles and suppression of serum viremia, thereby selecting for evolution of the virus into a PE2-cleaving, low HS-binding phenotype

    The interferon-induced exonuclease ISG20 exerts antiviral activity through upregulation of type I interferon response proteins

    Get PDF
    The host immune responses to infection lead to the production of type I interferon (IFN), and the upregulation of interferon-stimulated genes (ISGs) reduces virus replication and virus dissemination within a host. Ectopic expression of the interferon-induced 20-kDa exonuclease ISG20 suppressed replication of chikungunya virus and Venezuelan equine encephalitis virus, two mosquito-vectored RNA alphaviruses. Since the replication of alphavirus genomes occurs exclusively in the cytoplasm, the mechanism of nucleus-localized ISG20 inhibition of replication is unclear. In this study, we determined that ISG20 acts as a master regulator of over 100 genes, many of which are ISGs. Specifically, ISG20 upregulated IFIT1 genes and inhibited translation of the alphavirus genome. Furthermore, IFIT1-sensitive alphavirus replication was increased in Isg20βˆ’/βˆ’ mice compared to the replication of wild-type viruses but not in cells ectopically expressing ISG20. We propose that ISG20 acts as an indirect regulator of RNA virus replication in the cytoplasm through the upregulation of many other ISGs.Type I interferon (IFN)-stimulated genes (ISGs) have critical roles in inhibiting virus replication and dissemination. Despite advances in understanding the molecular basis of ISG restriction, the antiviral mechanisms of many remain unclear. The 20-kDa ISG ISG20 is a nuclear 3′–5β€² exonuclease with preference for single-stranded RNA (ssRNA) and has been implicated in the IFN-mediated restriction of several RNA viruses. Although the exonuclease activity of ISG20 has been shown to degrade viral RNA in vitro, evidence has yet to be presented that virus inhibition in cells requires this activity. Here, we utilized a combination of an inducible, ectopic expression system and newly generated Isg20βˆ’/βˆ’ mice to investigate mechanisms and consequences of ISG20-mediated restriction. Ectopically expressed ISG20 localized primarily to Cajal bodies in the nucleus and restricted replication of chikungunya and Venezuelan equine encephalitis viruses. Although restriction by ISG20 was associated with inhibition of translation of infecting genomic RNA, degradation of viral RNAs was not observed. Instead, translation inhibition of viral RNA was associated with ISG20-induced upregulation of over 100 other genes, many of which encode known antiviral effectors. ISG20 modulated the production of IFIT1, an ISG that suppresses translation of alphavirus RNAs. Consistent with this observation, the pathogenicity of IFIT1-sensitive alphaviruses was increased in Isg20βˆ’/βˆ’ mice compared to that of wild-type viruses but not in cells ectopically expressing ISG20. Our findings establish an indirect role for ISG20 in the early restriction of RNA virus replication by regulating expression of other ISGs that inhibit translation and possibly other activities in the replication cycle

    Interferon-alpha/beta deficiency greatly exacerbates arthritogenic disease in mice infected with wild-type chikungunya virus but not with the cell culture-adapted live-attenuated 181/25 vaccine candidate

    Get PDF
    AbstractIn humans, chikungunya virus (CHIKV) infection causes fever, rash, and acute and persisting polyarthralgia/arthritis associated with joint swelling. We report a new CHIKV disease model in adult mice that distinguishes the wild-type CHIKV-LR strain from the live-attenuated vaccine strain (CHIKV-181/25). Although eight-week old normal mice inoculated in the hind footpad developed no hind limb swelling with either virus, CHIKV-LR replicated in musculoskeletal tissues and caused detectable inflammation. In mice deficient in STAT1-dependent interferon (IFN) responses, CHIKV-LR caused significant swelling of the inoculated and contralateral limbs and dramatic inflammatory lesions, while CHIKV-181/25 vaccine and another arthritogenic alphavirus, Sindbis, failed to induce swelling. IFN responses suppressed CHIKV-LR and CHIKV-181/25 replication equally in dendritic cells in vitro whereas macrophages were refractory to infection independently of STAT1-mediated IFN responses. Glycosaminoglycan (GAG) binding may be a CHIKV vaccine attenuation mechanism as CHIKV-LR infectivity was not dependent upon GAG, while CHIKV-181/25 was highly dependent

    A Mouse Model for Studying Viscerotropic Disease Caused by Yellow Fever Virus Infection

    Get PDF
    Mosquito-borne yellow fever virus (YFV) causes highly lethal, viscerotropic disease in humans and non-human primates. Despite the availability of efficacious live-attenuated vaccine strains, 17D-204 and 17DD, derived by serial passage of pathogenic YFV strain Asibi, YFV continues to pose a significant threat to human health. Neither the disease caused by wild-type YFV, nor the molecular determinants of vaccine attenuation and immunogenicity, have been well characterized, in large part due to the lack of a small animal model for viscerotropic YFV infection. Here, we describe a small animal model for wild-type YFV that manifests clinical disease representative of that seen in primates without adaptation of the virus to the host, which was required for the current hamster YF model. Investigation of the role of type I interferon (IFN-Ξ±/Ξ²) in protection of mice from viscerotropic YFV infection revealed that mice deficient in the IFN-Ξ±/Ξ² receptor (A129) or the STAT1 signaling molecule (STAT129) were highly susceptible to infection and disease, succumbing within 6–7 days. Importantly, these animals developed viscerotropic disease reminiscent of human YF, instead of the encephalitic signs typically observed in mice. Rapid viremic dissemination and extensive replication in visceral organs, spleen and liver, was associated with severe pathologies in these tissues and dramatically elevated MCP-1 and IL-6 levels, suggestive of a cytokine storm. In striking contrast, infection of A129 and STAT129 mice with the 17D-204 vaccine virus was subclinical, similar to immunization in humans. Although, like wild-type YFV, 17D-204 virus amplified within regional lymph nodes and seeded a serum viremia in A129 mice, infection of visceral organs was rarely established and rapidly cleared, possibly by type II IFN-dependent mechanisms. The ability to establish systemic infection and cause viscerotropic disease in A129 mice correlated with infectivity for A129-derived, but not WT129-derived, macrophages and dendritic cells in vitro, suggesting a role for these cells in YFV pathogenesis. We conclude that the ability of wild-type YFV to evade and/or disable components of the IFN-Ξ±/Ξ² response may be primate-specific such that infection of mice with a functional IFN-Ξ±/Ξ² antiviral response is attenuated. Consequently, subcutaneous YFV infection of A129 mice represents a biologically relevant model for studying viscerotropic infection and disease development following wild-type virus inoculation, as well as mechanisms of 17D-204 vaccine attenuation, without a requirement for adaptation of the virus

    Adaptation of Sindbis Virus to BHK Cells Selects for Use of Heparan Sulfate as an Attachment Receptor

    Get PDF
    Attachment of Sindbis virus to the cell surface glycosaminoglycan heparan sulfate (HS) and the selection of this phenotype by cell culture adaptation were investigated. Virus (TR339) was derived from a cDNA clone representing the consensus sequence of strain AR339 (K. L. McKnight, D. A. Simpson, S. C. Lin, T. A. Knott, J. M. Polo, D. F. Pence, D. B. Johannsen, H. W. Heidner, N. L. Davis, and R. E. Johnston, J. Virol. 70:1981–1989, 1996) and from mutant clones containing either one or two dominant cell culture adaptations in the E2 structural glycoprotein (Arg instead of Ser at E2 position 1 [designated TRSB]) or this mutation plus Arg for Ser at E2 114 [designated TRSB-R114]). The consensus virus, TR339, bound to baby hamster kidney (BHK) cells very poorly. The mutation in TRSB increased binding 10- to 50-fold, and the additional mutation in TRSB-R114 increased binding 3- to 5-fold over TRSB. The magnitude of binding was positively correlated with the degree of cell culture adaptation and with attenuation of these viruses in neonatal mice. HS was identified as the attachment receptor for the mutant viruses by the following experimental results. (i) Low concentrations of soluble heparin inhibited plaque formation on and binding of mutant viruses to BHK cells by >95%. In contrast, TR339 showed minimal inhibition at high concentrations. (ii) Binding and infectivity of TRSB-R114 was sensitive to digestion of cell surface HS with heparinase III, and TRSB was sensitive to both heparinase I and heparinase III. TR339 infectivity was only slightly affected by either digestion. (iii) Radiolabeled TRSB and TRSB-R114 attached efficiently to heparin-agarose beads in binding assays, while TR339 showed virtually no binding. (iv) Binding and infectivity of TRSB and TRSB-R114, but not TR339, were greatly reduced on Chinese hamster ovary cells deficient in HS specifically or all glycosaminoglycans. (v) High-multiplicity-of-infection passage of TR339 on BHK cell cultures resulted in rapid coselection of high-affinity binding to BHK cells and attachment to heparin-agarose beads. Sequencing of the passaged virus population revealed a mutation from Glu to Lys at E2 70, a mutation common to many laboratory strains of Sindbis virus. These results suggest that TR339, the most virulent virus tested, attaches to cells through a low-affinity, primarily HS-independent mechanism. Adaptive mutations, selected during cell culture growth of Sindbis virus, enhance binding and infectivity by allowing the virus to attach by an alternative mechanism that is dependent on the presence of cell surface HS

    Cell-specific targeting of lentiviral vectors mediated by fusion proteins derived from Sindbis virus, vesicular stomatitis virus, or avian sarcoma/leukosis virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability to efficiently and selectively target gene delivery vectors to specific cell types <it>in vitro </it>and <it>in vivo </it>remains one of the formidable challenges in gene therapy. We pursued two different strategies to target lentiviral vector delivery to specific cell types. In one of the strategies, vector particles bearing a membrane-bound stem cell factor sequence plus a separate fusion protein based either on Sindbis virus strain TR339 glycoproteins or the vesicular stomatitis virus G glycoprotein were used to selectively transduce cells expressing the corresponding stem cell factor receptor (c-kit). An alternative approach involved soluble avian sarcoma/leukosis virus receptors fused to cell-specific ligands including stem cell factor and erythropoietin for targeting lentiviral vectors pseudotyped with avian sarcoma/leukosis virus envelope proteins to cells that express the corresponding receptors.</p> <p>Results</p> <p>The titers of unconcentrated vector particles bearing Sindbis virus strain TR339 or vesicular stomatitis virus G fusion proteins plus stem cell factor in the context of c-kit expressing cells were up to 3.2 Γ— 10<sup>5 </sup>transducing units per ml while vector particles lacking the stem cell factor ligand displayed titers that were approximately 80 fold lower. On cells that lacked the c-kit receptor, the titers of stem cell factor-containing vectors were approximately 40 times lower compared to c-kit-expressing cells.</p> <p>Lentiviral vectors pseudotyped with avian sarcoma/leukosis virus subgroup A or B envelope proteins and bearing bi-functional bridge proteins encoding erythropoietin or stem cell factor fused to the soluble extracellular domains of the avian sarcoma/leukosis virus subgroup A or B receptors resulted in efficient transduction of erythropoietin receptor or c-kit-expressing cells. Transduction of erythropoietin receptor-expressing cells mediated by bi-functional bridge proteins was found to be dependent on the dose, the correct subgroup-specific virus receptor and the correct envelope protein. Furthermore, transduction was completely abolished in the presence of anti-erythropoietin antibody.</p> <p>Conclusions</p> <p>Our results indicate that the avian sarcoma/leukosis virus bridge strategy provides a reliable approach for cell-specific lentiviral vector targeting. The background levels were lower compared to alternative strategies involving Sindbis virus strain TR339 or vesicular stomatitis virus fusion proteins.</p

    Encephalitic alphaviruses exploit caveola-mediated transcytosis at the blood-brain barrier for central nervous system entry

    Get PDF
    Venezuelan and western equine encephalitis viruses (VEEV and WEEV, respectively) invade the central nervous system (CNS) early during infection, via neuronal and hematogenous routes. While viral replication mediates host shutoff, including expression of type I interferons (IFN), few studies have addressed how alphaviruses gain access to the CNS during established infection or the mechanisms of viral crossing at the blood-brain barrier (BBB). Here, we show that hematogenous dissemination of VEEV and WEEV into the CNS occurs via caveolin-1 (Cav-1)-mediated transcytosis (Cav-MT) across an intact BBB, which is impeded by IFN and inhibitors of RhoA GTPase. Use of reporter and nonreplicative strains also demonstrates that IFN signaling mediates viral restriction within cells comprising the neurovascular unit (NVU), differentially rendering brain endothelial cells, pericytes, and astrocytes permissive to viral replication. Transmission and immunoelectron microscopy revealed early events in virus internalization and Cav-1 association within brain endothelial cells. Cav-1-deficient mice exhibit diminished CNS VEEV and WEEV titers during early infection, whereas viral burdens in peripheral tissues remained unchanged. Our findings show that alphaviruses exploit Cav-MT to enter the CNS and that IFN differentially restricts this process at the BBB

    Cryo-EM structures of alphavirus conformational intermediates in low pH-triggered prefusion states

    Get PDF
    Alphaviruses can cause severe human arthritis and encephalitis. During virus infection, structural changes of viral glycoproteins in the acidified endosome trigger virus-host membrane fusion for delivery of the capsid core and RNA genome into the cytosol to initiate virus translation and replication. However, mechanisms by which E1 and E2 glycoproteins rearrange in this process remain unknown. Here, we investigate prefusion cryoelectron microscopy (cryo-EM) structures of eastern equine encephalitis virus (EEEV) under acidic conditions. With models fitted into the low-pH cryo-EM maps, we suggest that E2 dissociates from E1, accompanied by a rotation (∼60°) of the E2-B domain (E2-B) to expose E1 fusion loops. Cryo-EM reconstructions of EEEV bound to a protective antibody at acidic and neutral pH suggest that stabilization of E2-B prevents dissociation of E2 from E1. These findings reveal conformational changes of the glycoprotein spikes in the acidified host endosome. Stabilization of E2-B may provide a strategy for antiviral agent development
    • …
    corecore